Do you want to publish a course? Click here

On the logarithmic comparison theorem for integrable logarithmic connections

129   0   0.0 ( 0 )
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a complex analytic manifold, $Dsubset X$ a free divisor with jacobian ideal of linear type (e.g. a locally quasi-homogeneous free divisor), $j: U=X-D to X$ the corresponding open inclusion, $E$ an integrable logarithmic connection with respect to $D$ and $L$ the local system of the horizontal sections of $E$ on $U$. In this paper we prove that the canonical morphisms between the logarithmic de Rham complex of $E(kD)$ and $R j_* L$ (resp. the logarithmic de Rham complex of $E(-kD)$ and $j_!L$) are isomorphisms in the derived category of sheaves of complex vector spaces for $kgg 0$ (locally on $X$)



rate research

Read More

We prove that the log smooth deformations of a proper log smooth saturated log Calabi-Yau space are unobstructed.
93 - Nikita Nikolaev 2019
We prove a functorial correspondence between a category of logarithmic $mathfrak{sl}_2$-connections on a curve $X$ with fixed generic residues and a category of abelian logarithmic connections on an appropriate spectral double cover $pi : Sigma to X$. The proof is by constructing a pair of inverse functors $pi^{text{ab}}, pi_{text{ab}}$, and the key is the construction of a certain canonical cocycle valued in the automorphisms of the direct image functor $pi_ast$.
We describe some results on moduli space of logarithmic connections equipped with framings on a $n$-pointed compact Riemann surface.
We study the branched holomorphic projective structures on a compact Riemann surface $X$ with a fixed branching divisor $S, =, sum_{i=1}^d x_i$, where $x_i ,in, X$ are distinct points. After defining branched ${rm SO}(3,{mathbb C})$--opers, we show that the branched holomorphic projective structures on $X$ are in a natural bijection with the branched ${rm SO}(3,{mathbb C})$--opers singular at $S$. It is deduced that the branched holomorphic projective structures on $X$ are also identified with a subset of the space of all logarithmic connections on $J^2((TX)otimes {mathcal O}_X(S))$ singular over $S$, satisfying certain natural geometric conditions.
80 - Osamu Fujino 2019
John Lesieutre constructed an example satisfying $kappa_sigma e kappa_ u$. This says that the proof of the inequalities in Theorems 1.3, 1.9, and Remark 3.8 in [O. Fujino, On subadditivity of the logarithmic Kodaira dimension, J. Math. Soc. Japan 69 (2017), no. 4, 1565--1581] is insufficient. We claim that some weaker inequalities still hold true and they are sufficient for various applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا