Do you want to publish a course? Click here

Planar coincidences for N-fold symmetry

106   0   0.0 ( 0 )
 Added by Michael Baake
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The coincidence problem for planar patterns with $N$-fold symmetry is considered. For the N-fold symmetric module with $N<46$, all isometries of the plane are classified that result in coincidences of finite index. This is done by reformulating the problem in terms of algebraic number fields and using prime factorization. The more complicated case $N ge 46$ is briefly discussed and N=46 is described explicitly. The results of the coincidence problem also solve the problem of colour lattices in two dimensions and its natural generalization to colour modules.



rate research

Read More

We consider the problem of distinguishing convex subsets of $n$-cyclotomic model sets $varLambda$ by (discrete parallel) X-rays in prescribed $varLambda$-directions. In this context, a `magic number $m_{varLambda}$ has the property that any two convex subsets of $varLambda$ can be distinguished by their X-rays in any set of $m_{varLambda}$ prescribed $varLambda$-directions. Recent calculations suggest that (with one exception in the case $n=4$) the least possible magic number for $n$-cyclotomic model sets might just be $N+1$, where $N=operatorname{lcm}(n,2)$.
110 - M. Baake , P. Zeiner 2007
The coincidence site lattices (CSLs) of prominent 4-dimensional lattices are considered. CSLs in 3 dimensions have been used for decades to describe grain boundaries in crystals. Quasicrystals suggest to also look at CSLs in dimensions $d>3$. Here, we discuss the CSLs of the root lattice $A_4$ and the hypercubic lattices, which are of particular interest both from the mathematical and the crystallographic viewpoint. Quaternion algebras are used to derive their coincidence rotations and the CSLs. We make use of the fact that the CSLs can be linked to certain ideals and compute their indices, their multiplicities and encapsulate all this in generating functions in terms of Dirichlet series. In addition, we sketch how these results can be generalised for 4--dimensional $Z$--modules by discussing the icosian ring.
113 - M. Baake , P. Gritzmann , C. Huck 2006
Discrete tomography is a well-established method to investigate finite point sets, in particular finite subsets of periodic systems. Here, we start to develop an efficient approach for the treatment of finite subsets of mathematical quasicrystals. To this end, the class of cyclotomic model sets is introduced, and the corresponding consistency, reconstruction and uniqueness problems of the discrete tomography of these sets are discussed.
We show that the asymptotic dimension of a geodesic space that is homeomorphic to a subset in the plane is at most three. In particular, the asymptotic dimension of the plane and any planar graph is at most three.
We formulate and prove a periodic analog of Maxwells theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا