No Arabic abstract
Let $S$ be a Riemann surface obtained by deleting a finite number of points, called cusps, from a compact Riemann surface. Let $rho: pi_1(S)to Sl(n, mathbb{C})$ be a semisimple linear representation of $pi_1(S)$ which is unipotent near the cusps. We investigate various cohomologies associated to $rho$ of $bar S$ with degenerating coefficients $L_{rho}$ (considered as a local system -- a flat vector bundle, a Higgs bundle, or a $mathcal{D}$-module, depending on the context): the v{C}ech cohomology of $j_*L_{rho}$, the $L^2$-cohomology, the $L^2$-Dolbeault cohomology, and the $L^2$-Higgs cohomology, and the relationships between them. This paper is meant to be a part of the general program of studying cohomologies with degenerating coefficients on quasiprojective varieties and their Kahlerian generalizations. The general aim here is not restricted to the case of curves nor to the one of representations that are unipotent near the divisor. The purpose of this note therefore is to illuminate at this particular case where many of the (analytic and geometric) difficulties of the general case are not present what differences will appear when we consider unipotent harmonic bundles instead of Variations of Hodge Structures where the results are known.
In this note, we survey our recent work concerning cohomologies of harmonic bundles on quasi-compact Kaehler manifolds.
In this note, we propose an approach to the study of the analogue for unipotent harmonic bundles of Schmids Nilpotent Orbit Theorem. Using this approach, we construct harmonic metrics on unipotent bundles over quasi-compact Kahler manifolds with carefully controlled asymptotics near the compactifying divisor; such a metric is unique up to some isometry. Such an asymptotic behavior is canonical in some sense.
We prove that the kernel bundle of the evaluation morphism of global sections, namely the syzygy bundle, of a sufficiently ample line bundle on a smooth projective variety is slope stable with respect to any polarization. This settles a conjecture of Ein-Lazarsfeld-Mustopa.
We classify the Ulrich vector bundles of arbitrary rank on smooth projective varieties of minimal degree. In the process, we prove the stability of the sheaves of relative differentials on rational scrolls.
In this paper we count the number of isomorphism classes of geometrically indecomposable quasi-parabolic structures of a given type on a given vector bundle on the projective line over a finite field. We give a conjectural cohomological interpretation for this counting using the moduli space of Higgs fields on the given vector bundle over the complex projective line with prescribed residues. We prove a certain number of results which bring evidences to the main conjecture. We detail the case of rank 2 vector bundles.