Do you want to publish a course? Click here

Examples of moderate deviation principle for diffusion processes

156   0   0.0 ( 0 )
 Added by R. Liptser
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

Taking into account some likeness of moderate deviations (MD) and central limit theorems (CLT), we develop an approach, which made a good showing in CLT, for MD analysis of a family $$ S^kappa_t=frac{1}{t^kappa}int_0^tH(X_s)ds, ttoinfty $$ for an ergodic diffusion process $X_t$ under $0.5<kappa<1$ and appropriate $H$. We mean a decomposition with ``corrector: $$ frac{1}{t^kappa}int_0^tH(X_s)ds={rm corrector}+frac{1}{t^kappa}underbrace{M_t}_{rm martingale}. $$ and show that, as in the CLT analysis, the corrector is negligible but in the MD scale, and the main contribution in the MD brings the family ``$ frac{1}{t^kappa}M_t, ttoinfty. $ Starting from Bayer and Freidlin, cite{BF}, and finishing by Wus papers cite{Wu1}-cite{WuH}, in the MD study Laplaces transform dominates. In the paper, we replace the Laplace technique by one, admitting to give the conditions, providing the MD, in terms of ``drift-diffusion parameters and $H$. However, a verification of these conditions heavily depends on a specificity of a diffusion model. That is why the paper is named ``Examples ....



rate research

Read More

We establish a central limit theorem and prove a moderate deviation principle for inviscid stochastic Burgers equation. Due to the lack of viscous term, this is done in the framework of kinetic solution. The weak convergence method and doubling variables method play a key role.
A Cramer-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides theoretical justification when the limiting tail probability can be used to estimate the tail probability under study. Chen Fang and Shao (2013) obtained a general Cramer-type moderate result using Steins method when the limiting was a normal distribution. In this paper, Cramer-type moderate deviation theorems are established for nonnormal approximation under a general Stein identity, which is satisfied via the exchangeable pair approach and Steins coupling. In particular, a Cramer-type moderate deviation theorem is obtained for the general Curie--Weiss model and the imitative monomer-dimer mean-field model.
We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci, Rossi and Wigman (2020) and Todino (2020) respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thale (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence.
134 - Lulu Fang , Lei Shang 2016
Large and moderate deviation principles are proved for Engel continued fractions, a new type of continued fraction expansion with non-decreasing partial quotients in number theory.
We initiate a study of large deviations for block model random graphs in the dense regime. Following Chatterjee-Varadhan(2011), we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tail large deviations for homomorphism densities of regular graphs. We identify the existence of a symmetric phase, where the graph, conditioned on the rare event, looks like a block model with the same block sizes as the generating graphon. In specific examples, we also identify the existence of a symmetry breaking regime, where the conditional structure is not a block model with compatible dimensions. This identifies a reentrant phase transition phenomenon for this problem---analogous to one established for Erdos-Renyi random graphs (Chatterjee-Dey(2010), Chatterjee-Varadhan(2011)). Finally, extending the analysis of Lubetzky-Zhao(2015), we identify the precise boundary between the symmetry and symmetry breaking regime for homomorphism densities of regular graphs and the operator norm on Erdos-Renyi bipartite graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا