We prove Rellich and improved Rellich inequalities that involve the distance function from a hypersurface of codimension $k$, under a certain geometric assumption. In case the distance is taken from the boundary, that assumption is the convexity of the domain. We also discuss the best constant of these inequalities.
We present a unified approach to improved $L^p$ Hardy inequalities in $R^N$. We consider Hardy potentials that involve either the distance from a point, or the distance from the boundary, or even the intermediate case where distance is taken from a surface of codimension $1<k<N$. In our main result we add to the right hand side of the classical Hardy inequality, a weighted $L^p$ norm with optimal weight and best constant. We also prove non-homogeneous improved Hardy inequalities, where the right hand side involves weighted L^q norms, q eq p.
We study the wave equation in the exterior of a bounded domain $K$ with dissipative boundary condition $partial_{ u} u - gamma(x) u = 0$ on the boundary $Gamma$ and $gamma(x) > 0.$ The solutions are described by a contraction semigroup $V(t) = e^{tG}, : t geq 0.$ The eigenvalues $lambda_k$ of $G$ with ${rm Re}: lambda_k < 0$ yield asymptotically disappearing solutions $u(t, x) = e^{lambda_k t} f(x)$ having exponentially decreasing global energy. We establish a Weyl formula for these eigenvalues in the case $min_{xin Gamma} gamma(x) > 1.$ For strictly convex obstacles $K$ this formula concerns all eigenvalues of $G.$
We consider a general class of sharp $L^p$ Hardy inequalities in $R^N$ involving distance from a surface of general codimension $1leq kleq N$. We show that we can succesively improve them by adding to the right hand side a lower order term with optimal weight and best constant. This leads to an infinite series improvement of $L^p$ Hardy inequalities.
In this paper we study the best constant in a Hardy inequality for the p-Laplace operator on convex domains with Robin boundary conditions. We show, in particular, that the best constant equals $((p-1)/p)^p$ whenever Dirichlet boundary conditions are imposed on a subset of the boundary of non-zero measure. We also discuss some generalizations to non-convex domains.