Do you want to publish a course? Click here

The homotopy of the K(2)-local Moore spectrum at the prime 3 revisited

142   0   0.0 ( 0 )
 Added by Hans-Werner Henn
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we use the approach introduced in an earlier paper by Goerss, Henn, Mahowald and Rezk in order to analyze the homotopy groups of L_{K(2)}V(0), the mod-3 Moore spectrum V(0) localized with respect to Morava K-theory K(2). These homotopy groups have already been calculated by Shimomura. The results are very complicated so that an independent verification via an alternative approach is of interest. In fact, we end up with a result which is more precise and also differs in some of its details from that of Shimomura. An additional bonus of our approach is that it breaks up the result into smaller and more digestible chunks which are related to the K(2)-localization of the spectrum TMF of topological modular forms and related spectra. Even more, the Adams-Novikov differentials for L_{K(2)}V(0) can be read off from those for TMF.

rate research

Read More

We calculate the homotopy type of the Brown-Comenetz dual $I_2$ of the K(2)-local sphere at the prime 3 and show that there is a twisting by a non-trivial element $P$ in the exotic part of the Picard group. We give a complete characterization of $P$ as well. The main technique is to give a sequence of calculations of the homotopy groups of elements of the Picard group after smashing with the Smith-Toda complex V(1).
We calculate the rational homotopy and the K(1)-local homotopy of the K(2)-local sphere at the prime 3 and level 2. We use this to verify the chromatic splitting conjecture in this case.
120 - Mark Behrens , Kyle Ormsby 2012
We study modular approximations Q(l), l = 3,5, of the K(2)-local sphere at the prime 2 that arise from l-power degree isogenies of elliptic curves. We develop Hopf algebroid level tools for working with Q(l) and record Hill, Hopkins, and Ravenels computation of the homotopy groups of TMF_0(5). Using these tools and formulas of Mahowald and Rezk for Q(3) we determine the image of Shimomuras 2-primary divided beta-family in the Adams-Novikov spectral sequences for Q(3) and Q(5). Finally, we use low-dimensional computations of the homotopy of Q(3) and Q(5) to explore the role of these spectra as approximations to the K(2)-local sphere.
196 - Agnes Beaudry 2017
In this note, we compute the image of the $alpha$-family in the homotopy of the $K(2)$-local sphere at the prime $p=2$ by locating its image in the algebraic duality spectral sequence. This is a stepping stone for the computation of the homotopy groups of the $K(2)$-local sphere at the prime $2$ using the duality spectral sequences.
Let n geq 1 and let p be any prime. Also, let E_n be the Lubin-Tate spectrum, G_n the extended Morava stabilizer group, and K(n) the nth Morava K-theory spectrum. Then work of Devinatz and Hopkins and some results due to Behrens and the first author of this note, show that if X is a finite spectrum, then the localization L_{K(n)}(X) is equivalent to the homotopy fixed point spectrum (L_{K(n)}(E_n wedge X))^{hG_n}, which is formed with respect to the continuous action of G_n on L_{K(n)}(E_n wedge X). In this note, we show that this equivalence holds for any (S-cofibrant) spectrum X. Also, we show that for all such X, the strongly convergent Adams-type spectral sequence abutting to pi_ast(L_{K(n)}(X)) is isomorphic to the descent spectral sequence that abuts to pi_ast((L_{K(n)}(E_n wedge X))^{hG_n}).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا