We will review the main results concerning the automorphism groups of saturated structures which were obtained during the two last decades. The main themes are: the small index property in the countable and uncountable cases; the possibility of recovering a structure or a significant part of it from its automorphism group; the subgroup of strong automorphisms.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For example, if $M$ is a countable, $omega$-categorical structure and $Aut(M)$ is amenable, as a topological group, then the Lascar Galois group $Gal_{L}(T)$ of the theory $T$ of $M$ is compact, Hausdorff (also over any finite set of parameters), that is $T$ is G-compact. An essentially special case is that if $Aut(M)$ is extremely amenable, then $Gal_{L}(T)$ is trivial, so, by a theorem of Lascar, the theory $T$ can be recovered from its category $Mod(T)$ of models. On the side of definable groups, we prove for example that if $G$ is definable in a model $M$, and $G$ is definably amenable, then the connected components ${G^{*}}^{00}_{M}$ and ${G^{*}}^{000}_{M}$ coincide, answering positively a question from an earlier paper of the authors. We also take the opportunity to further develop the model-theoretic approach to topological dynamics, obtaining for example some new invariants for topological groups, as well as allowing a uniform approach to the theorems above and the various categories.
We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorv{c}evi{c} theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the universal ambit as a certain space of types in an expanded language. Using this, we recover various results of Kechris-Pestov-Todorv{c}evi{c}, Moore, Ngyuen Van Th{e}, in the context of automorphism groups of not necessarily countable structures, as well as Zucker.
We apply results proved in [Li19] to the linear order expansions of non-trivial free homogeneous structures and the universal n-linear order for $ngeq 2$, and prove the simplicity of their automorphism groups.
We classify compact manifolds of dimension three equipped with a path structure and a fixed contact form (which we refer to as a strict path structure) under the hypothesis that their automorphism group is non-compact. We use a Cartan connection associated to the structure and show that its curvature is constant.
Let $mathrm{G}$ be a subgroup of the symmetric group $mathfrak S(U)$ of all permutations of a countable set $U$. Let $overline{mathrm{G}}$ be the topological closure of $mathrm{G}$ in the function topology on $U^U$. We initiate the study of the poset $overline{mathrm{G}}[U]:={f[U]mid fin overline{mathrm{G}}}$ of images of the functions in $overline{mathrm{G}}$, being ordered under inclusion. This set $overline{mathrm{G}}[U]$ of subsets of the set $U$ will be called the emph{poset of copies for} the group $mathrm{G}$. A denomination being justified by the fact that for every subgroup $mathrm{G}$ of the symmetric group $mathfrak S(U)$ there exists a homogeneous relational structure $R$ on $U$ such that $overline G$ is the set of embeddings of the homogeneous structure $R$ into itself and $overline{mathrm{G}}[U]$ is the set of copies of $R$ in $R$ and that the set of bijections $overline Gcap mathfrak S(U)$ of $U$ to $U$ forms the group of automorphisms of $mathrm{R}$.