Do you want to publish a course? Click here

Automorphism groups of linearly ordered homogeneous structures

102   0   0.0 ( 0 )
 Added by Yibei Li
 Publication date 2020
  fields
and research's language is English
 Authors Yibei Li




Ask ChatGPT about the research

We apply results proved in [Li19] to the linear order expansions of non-trivial free homogeneous structures and the universal n-linear order for $ngeq 2$, and prove the simplicity of their automorphism groups.



rate research

Read More

The superextension $lambda(X)$ of a set $X$ consists of all maximal linked families on $X$. Any associative binary operation $*: Xtimes X to X$ can be extended to an associative binary operation $*: lambda(X)timeslambda(X)tolambda(X)$. In the paper we study isomorphisms of superextensions of groups and prove that two groups are isomorphic if and only if their superextensions are isomorphic. Also we describe the automorphism groups of superextensions of all groups of cardinality $leq 5$.
We study topological groups $G$ for which the universal minimal $G$-system $M(G)$, or the universal irreducible affine $G$-system $IA(G)$ are tame. We call such groups intrinsically tame and convexly intrinsically tame. These notions are generaliz
We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer automorphisms preserving the peripheral structure is residually finite. We also show that Out(G) is virtually p-residually finite for every prime p if G is one-ended and toral relatively hyperbolic, or infinitely-ended and virtually p-residually finite.
In this article we present an extensive survey on the developments in the theory of non-abelian finite groups with abelian automorphism groups, and pose some problems and further research directions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا