Do you want to publish a course? Click here

Duality and Rational Modules in Hopf Algebras over Commutative Rings

98   0   0.0 ( 0 )
 Added by F. J. Lobillo
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

Let $A$ be an algebra over a commutative ring $R$. If $R$ is noetherian and $A^circ$ is pure in $R^A$, then the categories of rational left $A$-modules and right $A^circ$-comodules are isomorphic. In the Hopf algebra case, we can also strengthen the Blattner-Montgomery duality theorem. Finally, we give sufficient conditions to get the purity of $A^circ$ in $R^A$.



rate research

Read More

Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minimal) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
203 - Francois Couchot 2008
Let $R$ be a commutative local ring. It is proved that $R$ is Henselian if and only if each $R$-algebra which is a direct limit of module finite $R$-algebras is strongly clean. So, the matrix ring $mathbb{M}_n(R)$ is strongly clean for each integer $n>0$ if $R$ is Henselian and we show that the converse holds if either the residue class field of $R$ is algebraically closed or $R$ is an integrally closed domain or $R$ is a valuation ring. It is also shown that each $R$-algebra which is locally a direct limit of module-finite algebras, is strongly clean if $R$ is a $pi$-regular commutative ring.
137 - Zhimin Liu , Shenglin Zhu 2018
Let $left( H,Rright) $ be a finite dimensional semisimple and cosemisimple quasi-triangular Hopf algebra over a field $k$. In this paper, we give the structure of irreducible objects of the Yetter-Drinfeld module category ${} {}_{H}^{H}mathcal{YD}.$ Let $H_{R}$ be the Majids transmuted braided group of $left( H,Rright) ,$ we show that $H_{R}$ is cosemisimple. As a coalgebra, let $H_{R}=D_{1}opluscdotsoplus D_{r}$ be the sum of minimal $H$-adjoint-stable subcoalgebras. For each $i$ $left( 1leq ileq rright) $, we choose a minimal left coideal $W_{i}$ of $D_{i}$, and we can define the $R$-adjoint-stable algebra $N_{W_{i}}$ of $W_{i}$. Using Ostriks theorem on characterizing module categories over monoidal categories, we prove that $Vin{}_{H}^{H}mathcal{YD}$ is irreducible if and only if there exists an $i$ $left( 1leq ileq rright) $ and an irreducible right $N_{W_{i}}$-module $U_{i}$, such that $Vcong U_{i}otimes_{N_{W_{i}}}left( Hotimes W_{i}right) $. Our structure theorem generalizes the results of Dijkgraaf-Pasquier-Roche and Gould on Yetter-Drinfeld modules over finite group algebras. If $k$ is an algebraically closed field of characteristic, we stress that the $R$-adjoint-stable algebra $N_{W_{i}}$ is an algebra over which the dimension of each irreducible right module divides its dimension.
157 - Francois Couchot 2015
Let R be a ring (not necessarily commutative). A left R-module is said to be cotorsion if Ext 1 R (G, M) = 0 for any flat R-module G. It is well known that each pure-injective left R-module is cotorsion, but the converse does not hold: for instance, if R is left perfect but not left pure-semisimple then each left R-module is cotorsion but there exist non-pure-injective left modules. The aim of this paper is to describe the class C of commutative rings R for which each cotorsion R-module is pure-injective. It is easy to see that C contains the class of von Neumann regular rings and the one of pure-semisimple rings. We prove that C is strictly contained in the class of locally pure-semisimple rings. We state that a commutative ring R belongs to C if and only if R verifies one of the following conditions: (1) R is coherent and each pure-essential extension of R-modules is essential; (2) R is coherent and each RD-essential extension of R-modules is essential; (3) any R-module M is pure-injective if and only if Ext 1 R (R/A, M) = 0 for each pure ideal A of R (Baers criterion).
We characterize derivations and 2-local derivations from $M_{n}(mathcal{A})$ into $M_{n}(mathcal{M})$, $n ge 2$, where $mathcal{A}$ is a unital algebra over $mathbb{C}$ and $mathcal{M}$ is a unital $mathcal{A}$-bimodule. We show that every derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2,$ is the sum of an inner derivation and a derivation induced by a derivation from $mathcal{A}$ to $mathcal{M}$. We say that $mathcal{A}$ commutes with $mathcal{M}$ if $am=ma$ for every $ainmathcal{A}$ and $minmathcal{M}$. If $mathcal{A}$ commutes with $mathcal{M}$ we prove that every inner 2-local derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2$, is an inner derivation. In addition, if $mathcal{A}$ is commutative and commutes with $mathcal{M}$, then every 2-local derivation $D: M_{n}(mathcal{A}) to M_{n}(mathcal{M})$, $n ge 2$, is a derivation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا