Do you want to publish a course? Click here

A universal construction for moduli spaces of decorated vector bundles over curves

127   0   0.0 ( 0 )
 Added by Alexander Schmitt
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a smooth projective curve over the complex numbers. To every representation $rhocolon GL(r)lra GL(V)$ of the complex general linear group on the finite dimensional complex vector space $V$ which satisfies the assumption that there be an integer $alpha$ with $rho(z id_{C^r})=z^alpha id_V$ for all $zinC^*$ we associate the problem of classifying triples $(E,L,phi)$ where $E$ is a vector bundle of rank $r$ on $X$, $L$ is a line bundle on $X$, and $phicolon E_rholra L$ is a non trivial homomorphism. Here, $E_rho$ is the vector bundle of rank $dim V$ associated to $E$ via $rho$. If we take, for example, the standard representation of $GL(r)$ on $C^r$ we have to classify triples $(E,L,phi)$ consisting of $E$ as before and a non-zero homomorphism $phicolon Elra L$ which includes the so-called Bradlow pairs. For the representation of $GL(r)$ on $S^2C^3$ we find the conic bundles of Gomez and Sols. In the present paper, we will formulate a general semistability concept for the above triples which depends on a rational parameter $delta$ and establish the existence of moduli spaces of $delta$-(semi)stable triples of fixed topological type. The notion of semistability mimics the Hilbert-Mumford criterion for $SL(r)$ which is the main reason that such a general approach becomes feasible. In the known examples (the above, Higgs bundles, extension pairs, oriented framed bundles) we show how to recover the usual semistability concept. This process of simplification can also be formalized. Altogether, our results provide a unifying construction for the moduli spaces of most decorated vector bundle problems together with an automatism for finding the right notion of semistability and should therefore be of some interest.



rate research

Read More

Let $X$ be a smooth projective curve of genus $g geq 2$ and $M$ be the moduli space of rank 2 stable vector bundles on $X$ whose determinants are isomorphic to a fixed odd degree line bundle $L$. There has been a lot of works studying the moduli and recently the bounded derived category of coherent sheaves on $M$ draws lots of attentions. It was proved that the derived category of $X$ can be embedded into the derived category of $M$ by the second named author and Fonarev-Kuznetsov. In this paper we prove that the derived category of the second symmetric product of $X$ can be embedded into derived category of $M$ when $X$ is non-hyperelliptic and $g geq 16$.
126 - Alexander Schmitt 2003
We construct the Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves. The Hilbert compactification is the GIT quotient of some open part of an appropriate Hilbert scheme of curves in a Grassmannian. It has all the properties asked for by Teixidor.
We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank 3 and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Bialynicki-Birula decompositions associated to a scaling action with variation of stability and wall-crossing for moduli spaces of rank 2 pairs, which occur in the fixed locus of this action.
87 - Yunfeng Jiang 2019
We generalize the construction of M. Lieblich for the compactification of the moduli stack of $PGL_r$-bundles on algebraic spaces to the moduli stack of Tanaka-Thomas $PGL_r$-Higgs bundles on algebraic schemes. The method we use is the moduli stack of Higgs version of Azumaya algebras. In the case of smooth surfaces, we obtain a virtual fundamental class on the moduli stack of $PGL_r$-Higgs bundles. An application to the Vafa-Witten invariants is discussed.
262 - Insong Choe , Kiryong Chung , 2020
Let $C$ be an algebraic curve of genus $g$ and $L$ a line bundle over $C$. Let $mathcal{MS}_C(n,L)$ and $mathcal{MO}_C(n,L)$ be the moduli spaces of $L$-valued symplectic and orthogonal bundles respectively, over $C$ of rank $n$. We construct rational curves on these moduli spaces which generalize Hecke curves on the moduli space of vector bundles. As a main result, we show that these Hecke type curves have the minimal degree among the rational curves passing through a general point of the moduli spaces. As its byproducts, we show the non-abelian Torelli theorem and compute the automorphism group of moduli spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا