Do you want to publish a course? Click here

Landau singularities and singularities of holonomic integrals of the Ising class

110   0   0.0 ( 0 )
 Added by J. M. Maillard
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider families of multiple and simple integrals of the ``Ising class and the linear ordinary differential equations with polynomial coefficients they are solutions of. We compare the full set of singularities given by the roots of the head polynomial of these linear ODEs and the subset of singularities occurring in the integrals, with the singularities obtained from the Landau conditions. For these Ising class integrals, we show that the Landau conditions can be worked out, either to give the singularities of the corresponding linear differential equation or the singularities occurring in the integral. The singular behavior of these integrals is obtained in the self-dual variable $w= s/2/(1+s^2)$, with $s= sinh(2K)$, where $K=J/kT$ is the usual Ising model coupling constant. Switching to the variable $s$, we show that the singularities of the analytic continuation of series expansions of these integrals actually break the Kramers-Wannier duality. We revisit the singular behavior (J. Phys. A {bf 38} (2005) 9439-9474) of the third contribution to the magnetic susceptibility of Ising model $chi^{(3)}$ at the points $1+3w+4w^2= 0$ and show that $chi^{(3)}(s)$ is not singular at the corresponding points inside the unit circle $| s |=1$, while its analytical continuation in the variable $s$ is actually singular at the corresponding points $ 2+s+s^2=0$ oustside the unit circle ($| s | > 1$).

rate research

Read More

We introduce some multiple integrals that are expected to have the same singularities as the singularities of the $ n$-particle contributions $chi^{(n)}$ to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equation satisfied by these multiple integrals for $ n=1, 2, 3, 4$ and only modulo some primes for $ n=5$ and $ 6$, thus providing a large set of (possible) new singularities of the $chi^{(n)}$. We discuss the singularity structure for these multiple integrals by solving the Landau conditions. We find that the singularities of the associated ODEs identify (up to $n= 6$) with the leading pinch Landau singularities. The second remarkable obtained feature is that the singularities of the ODEs associated with the multiple integrals reduce to the singularities of the ODEs associated with a {em finite number of one dimensional integrals}. Among the singularities found, we underline the fact that the quadratic polynomial condition $ 1+3 w +4 w^2 = 0$, that occurs in the linear differential equation of $ chi^{(3)}$, actually corresponds to a remarkable property of selected elliptic curves, namely the occurrence of complex multiplication. The interpretation of complex multiplication for elliptic curves as complex fixed points of the selected generators of the renormalization group, namely isogenies of elliptic curves, is sketched. Most of the other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting an interpretation in terms of (motivic) mathematical structures beyond the theory of elliptic curves.
359 - B. M. McCoy , J-M. Maillard 2016
We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers-Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorised in a very simple way, in operators of decreasing orders.
We study the Ising model two-point diagonal correlation function $ C(N,N)$ by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this expansion, weighting, by powers of a variable $lambda$, the $j$-particle contributions, $ f^{(j)}_{N,N}$. The corresponding $ lambda$ extension of the two-point diagonal correlation function, $ C(N,N; lambda)$, is shown, for arbitrary $lambda$, to be a solution of the sigma form of the Painlev{e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors $ f^{(j)}_{N,N}$ are obtained and shown to have both a ``Russian doll nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral $ E$. Each $ f^{(j)}_{N,N}$ is expressed polynomially in terms of the elliptic integrals $ E$ and $ K$. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll structure. The previous $ lambda$-extensions, $ C(N,N; lambda)$ are, for singled-out values $ lambda= cos(pi m/n)$ ($m, n$ integers), also solutions of linear differential equations. These solutions of Painleve VI are actually algebraic functions, being associated with modular curves.
80 - F. Igloi , R. Juhasz , 1998
We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical properties by numerical methods and scaling considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to new quantities, such as the non-linear susceptibility, higher excitations and the energy-density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law singularities and the corresponding critical exponents, which vary with the distance from the critical point, can be related to the dynamical exponent z, the latter being the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the average energy-density autocorrelations decay with another exponent as [G^e]_av(t)~t^{-2-1/z}.
51 - John Collins 2020
The Landau equations give a physically useful criterion for how singularities arise in Feynman amplitudes. Furthermore, they are fundamental to the uses of perturbative QCD, by determining the important regions of momentum space in asymptotic problems. Generalizations are also useful. We will show that in existing treatments there are significant gaps in derivations, and in some cases implicit assumptions that will be shown here to be false in important cases like the massless Feynman graphs ubiquitous in QCD applications. In this paper is given a new proof that the Landau condition is both necessary and sufficient for physical-region pinches in the kinds of integral typified by Feynman graphs. The proofs range is broad enough to include the modified Feynman graphs that are used in QCD applications. Unlike many existing derivations, there is no need to use the Feynman parameter method. Some possible further applications of the new proof and its subsidiary results are proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا