We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstrom systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.
We derive basic equations of electromagnetic fields in fractal media which are specified by three indepedent fractal dimensions {alpha}_{i} in the respective directions x_{i} (i=1,2,3) of the Cartesian space in which the fractal is embedded. To grasp the generally anisotropic structure of a fractal, we employ the product measure, so that the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving the {alpha}_{i}s. First, a formulation based on product measures is shown to satisfy the four basic identities of vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Amp`ere laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwells electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.
We study a neutral atom with a non-vanishing electric dipole moment coupled to the quantized electromagnetic field. For a sufficiently small dipole moment and small momentum, the one-particle (self-) energy of an atom is proven to be a real-analytic function of its momentum. The main ingredient of our proof is a suitable form of the Feshbach-Schur spectral renormalization group.
Given a 3-dimensional Riemannian manifold (M,g), we investigate the existence of positive solutions of singularly perturbed Klein-Gordon-Maxwell systems and Schroedinger-Maxwell systems on M, with a subcritical nonlinearity. We prove that when the perturbation parameter epsilon is small enough, any stable critical point x_0 of the scalar curvature of the manifold (M,g) generates a positive solution (u_eps,v_eps) to both the systems such that u_eps concentrates at xi_0 as epsilon goes to zero.
In this paper we present the tanh method to obtain exact solutions to coupled MkDV system. This method may be applied to a variety of coupled systems of nonlinear ordinary and partial differential equations.
We use a probabilistic approach to study the rate of convergence to equilibrium for a collisionless (Knudsen) gas in dimension equal to or larger than 2. The use of a coupling between two stochastic processes allows us to extend and refine, in total variation distance, the polynomial rate of convergence given in [AG11] and [KLT13]. This is, to our knowledge, the first quantitative result in collisionless kinetic theory in dimension equal to or larger than 2 that does not require any symmetry of the domain, nor a monokinetic regime. Our study is also more general in terms of reflection at the boundary: we allow for rather general diffusive reflections and for a specular reflection component.