Do you want to publish a course? Click here

Elastic energy for reflection-symmetric topologies

103   0   0.0 ( 0 )
 Added by Jonathan M. Robbins
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nematic liquid crystals in a polyhedral domain, a prototype for bistable displays, may be described by a unit-vector field subject to tangent boundary conditions. Here we consider the case of a rectangular prism. For configurations with reflection-symmetric topologies, we derive a new lower bound for the one-constant elastic energy. For certain topologies, called conformal and anticonformal, the lower bound agrees with a previous result. For the remaining topologies, called nonconformal, the new bound is an improvement. For nonconformal topologies we derive an upper bound, which differs from the lower bound by a factor depending only on the aspect ratios of the prism.



rate research

Read More

94 - Jiarui Liu , Yisheng Song 2019
The strict opositivity of 4th order symmetric tensor may apply to detect vacuum stability of general scalar potential. For finding analytical expressions of (strict) opositivity of 4th order symmetric tensor, we may reduce its order to 3rd order to better deal with it. So, it is provided that several analytically sufficient conditions for the copositivity of 3th order 2 dimensional (3 dimensional) symmetric tensors. Subsequently, applying these conclusions to 4th order tensors, the analytically sufficient conditions of copositivity are proved for 4th order 2 dimensional and 3 dimensional symmetric tensors. Finally, we apply these results to present analytical vacuum stability conditions for vacuum stability for $mathbb{Z}_3$ scalar dark matter.
In this note we continue our investigations of the representation theoretic aspects of reflection positivity, also called Osterwalder--Schrader positivity. We explain how this concept relates to affine isometric actions on real Hilbert spaces and how this is connected with Gaussian processes with stationary increments.
In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional Brownian motion for Hurst index 0<Hle 1/2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0<H <1/2. We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL(2,R). We relate this to a measure preserving action on a Gaussian L^2-Hilbert space L^2(E).
This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا