In the context of (2+1)--dimensional quantum gravity with negative cosmological constant and topology R x T^2, constant matrix--valued connections generate a q--deformed representation of the fundamental group, and signed area phases relate the quantum matrices assigned to homotopic loops. Some features of the resulting quantum geometry are explored, and as a consequence a quantum version of the Goldman bracket is obtained
A formulation of singular classical theories (determined by degenerate Lagrangians) without constraints is presented. A partial Hamiltonian formalism in the phase space having an initially arbitrary number of momenta (which can be smaller than the number of velocities) is proposed. The equations of motion become first-order differential equations, and they coincide with those of multi-time dynamics, if a certain condition is imposed. In a singular theory, this condition is fulfilled in the case of the coincidence of the number of generalized momenta with the rank of the Hessian matrix. The noncanonical generalized velocities satisfy a system of linear algebraic equations, which allows an appropriate classification of singular theories (gauge and nongauge). A new antisymmetric bracket (similar to the Poisson bracket) is introduced, which describes the time evolution of physical quantities in a singular theory. The origin of constraints is shown to be a consequence of the (unneeded in our formulation) extension of the phase space. In this case the new bracket transforms into the Dirac bracket. Quantization is briefly discussed.
In which is developed a new form of superselection sectors of topological origin. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first we generalize the notion of representations of nets of C*-algebras, then we provide a brand new view on selection criteria by adopting one with a strong topological flavour. We prove that it is coherent with the older point of view, hence a clue to a genuine extension. In this light, we extend Roberts cohomological analysis to the case where 1--cocycles bear non trivial unitary representations of the fundamental group of the spacetime, equivalently of its Cauchy surface in case of global hyperbolicity. A crucial tool is a notion of group von Neumann algebras generated by the 1-cocycles evaluated on loops over fixed regions. One proves that these group von Neumann algebras are localized at the bounded region where loops start and end and to be factorial of finite type I. All that amounts to a new invariant, in a topological sense, which can be defined as the dimension of the factor. We prove that any 1-cocycle can be factorized into a part that contains only the charge content and another where only the topological information is stored. This second part resembles much what in literature are known as geometric phases. Indeed, by the very geometrical origin of the 1-cocycles that we discuss in the paper, they are essential tools in the theory of net bundles, and the topological part is related to their holonomy content. At the end we prove the existence of net representations.
Quantum theory on manifolds with boundaries have been studied extensively through von Neumann analysis of self adjoint operators. We approach the issues through introduction of singular $delta$ and $delta$ potentials. The advantages of this are pointed out as a model for black hole and in several other examples.
In this review we present a theory of cosmological constant and Dark Energy (DE), based on the topological structure of the vacuum. The Multiple Point Principle (MPP) is reviewed. It demonstrates the existence of the two vacua into the SM. The Froggatt-Nielsens prediction of the top-quark and Higgs masses is given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next order calculations. We also considered B.G. Sidharths theory of cosmological constant based on the non-commutative geometry of the Planck scale space-time, what gives an extremely small DE density providing the accelerating expansion of the Universe. Theory of two degenerate vacua - the Planck scale phase and Electroweak (EW) phase - also is reviewed, topological defects in these vacua are investigated, also the Compton wavelength phase suggested by B.G. Sidharth was discussed. A general theory of the phase transition and the problem of the vacuum stability in the SM is reviewed. Assuming that the recently discovered at the LHC new resonance with mass $m_S simeq 750$ GeV is a new scalar $S$ bound state $6t + 6bar t$, earlier predicted by C.D. Froggatt, H.B. Nielsen and L.V. Laperashvili, we try to provide the vacuum stability in the SM and exact accuracy of the MPP.
Abelian duality is realized naturally by combining differential cohomology and locally covariant quantum field theory. This leads to a C$^*$-algebra of observables, which encompasses the simultaneous discretization of both magnetic and electric fluxes. We discuss the assignment of physically well-behaved states to such algebra and the properties of the associated GNS triple. We show that the algebra of observables factorizes as a suitable tensor product of three C$^*$-algebras: the first factor encodes dynamical information, while the other two capture topological data corresponding to electric and magnetic fluxes. On the former factor we exhibit a state whose two-point correlation function has the same singular structure of a Hadamard state. Specifying suitable counterparts also on the topological factors we obtain a state for the full theory, providing ultimately a unitary implementation of Abelian duality.
J.E.Nelson University of Turin
,INFNn Sezione di Torino
.
(2004)
.
"Constant connections, quantum holonomies and the Goldman bracket"
.
Jeanette E. Nelson
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا