No Arabic abstract
Abelian duality is realized naturally by combining differential cohomology and locally covariant quantum field theory. This leads to a C$^*$-algebra of observables, which encompasses the simultaneous discretization of both magnetic and electric fluxes. We discuss the assignment of physically well-behaved states to such algebra and the properties of the associated GNS triple. We show that the algebra of observables factorizes as a suitable tensor product of three C$^*$-algebras: the first factor encodes dynamical information, while the other two capture topological data corresponding to electric and magnetic fluxes. On the former factor we exhibit a state whose two-point correlation function has the same singular structure of a Hadamard state. Specifying suitable counterparts also on the topological factors we obtain a state for the full theory, providing ultimately a unitary implementation of Abelian duality.
The relation between the 2d Ising partition function and spin network evaluations, reflecting a bulk-boundary duality between the 2d Ising model and 3d quantum gravity, promises an exchange of results and methods between statistical physics and quantum geometry. We apply this relation to the case of the tetrahedral graph. First, we find that the high/low temperature duality of the 2d Ising model translates into a new self-duality formula for Wigners 6j-symbol from the theory of spin recoupling. Second, we focus on the duality between the large spin asymptotics of the 6j-symbol and Fisher zeros. Using the Ponzano-Regge formula for the asymptotics for the 6j-symbol at large spins in terms of the tetrahedron geometry, we obtain a geometric formula for the zeros of the (inhomogeneous) Ising partition function in terms of triangle angles and dihedral angles in the tetrahedron. While it is well-known that the 2d intrinsic geometry can be used to parametrize the critical point of the Ising model, e.g. on isoradial graphs, it is the first time to our knowledge that the extrinsic geometry is found to also be relevant.This outlines a method towards a more general geometric parametrization of the Fisher zeros for the 2d Ising model on arbitrary graphs.
In the context of (2+1)--dimensional quantum gravity with negative cosmological constant and topology R x T^2, constant matrix--valued connections generate a q--deformed representation of the fundamental group, and signed area phases relate the quantum matrices assigned to homotopic loops. Some features of the resulting quantum geometry are explored, and as a consequence a quantum version of the Goldman bracket is obtained
Quantum theory on manifolds with boundaries have been studied extensively through von Neumann analysis of self adjoint operators. We approach the issues through introduction of singular $delta$ and $delta$ potentials. The advantages of this are pointed out as a model for black hole and in several other examples.
In which is developed a new form of superselection sectors of topological origin. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first we generalize the notion of representations of nets of C*-algebras, then we provide a brand new view on selection criteria by adopting one with a strong topological flavour. We prove that it is coherent with the older point of view, hence a clue to a genuine extension. In this light, we extend Roberts cohomological analysis to the case where 1--cocycles bear non trivial unitary representations of the fundamental group of the spacetime, equivalently of its Cauchy surface in case of global hyperbolicity. A crucial tool is a notion of group von Neumann algebras generated by the 1-cocycles evaluated on loops over fixed regions. One proves that these group von Neumann algebras are localized at the bounded region where loops start and end and to be factorial of finite type I. All that amounts to a new invariant, in a topological sense, which can be defined as the dimension of the factor. We prove that any 1-cocycle can be factorized into a part that contains only the charge content and another where only the topological information is stored. This second part resembles much what in literature are known as geometric phases. Indeed, by the very geometrical origin of the 1-cocycles that we discuss in the paper, they are essential tools in the theory of net bundles, and the topological part is related to their holonomy content. At the end we prove the existence of net representations.
We study excitations in edge theories for non-abelian quantum Hall states, focussing on the spin polarized states proposed by Read and Rezayi and on the spin singlet states proposed by two of the authors. By studying the exclusion statistics properties of edge-electrons and edge-quasiholes, we arrive at a novel K-matrix structure. Interestingly, the duality between the electron and quasihole sectors links the pseudoparticles that are characteristic for non-abelian statistics with composite particles that are associated to the `pairing physics of the non-abelian quantum Hall states.