Do you want to publish a course? Click here

Tropical Robinson-Schensted-Knuth correspondence and birational Weyl group actions

71   0   0.0 ( 0 )
 Added by Masatoshi Noumi
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using an elementary matrix approach, based on the technique of discrete Toda equation, we construct subtraction-free rational and piecewise linear transformations associated with various combinatorial algorithms, including the RSK correspondence. We also investigate birational Weyl group actions related to those algorithms.



rate research

Read More

220 - Maxim Gurevich 2021
We formalize some known categorical equivalences to give a rigorous treatment of smooth representations of p-adic general linear groups, as ungraded modules over quiver Hecke algebras of type A. Graded variants of RSK-standard modules are constructed for quiver Hecke algebras. Exporting recent results from the p-adic setting, we describe an effective method for construction and classification of all simple modules as quotients of modules induced from maximal homogenous data. It is established that the products involved in the RSK construction fit the Kashiwara-Kim notion of normal sequences of real modules. We deduce that RSK-standard modules have simple heads, devise a formula for the shift of grading between RSK-standard and simple self-dual modules, and establish properties of their decomposition matrix, thus confirming expectations for p-adic groups raised in a work of the author with Lapid. Subsequent work will exhibit how the presently introduced RSK construction generalizes the much-studied Specht construction, when inflated from cyclotomic quotient algebras.
105 - Mihai Nica 2014
We introduce an object called a decorated Young tableau which can equivalently be viewed as a continuous time trajectory of Young diagrams or as a non-intersecting line ensemble. By a natural extension of the Robinson-Schensted correspondence, we create a random pair of decorated Young tableaux from a Poisson point process in the plane, which we think of as a stochastic process in discrete space and continuous time. By using only elementary techniques and combinatorial properties, we identify this process as a Schur process and show it has the same law as certain non-intersecting Poisson walkers.
We propose a general method to realize an arbitrary Weyl group of Kac-Moody type as a group of birational canonical transformations, by means of a nilpotent Poisson algebra. We also give a Lie theoretic interpretation of this realization in terms of Kac-Moody Lie algebras and Kac-Moody groups.
We generalize to multi-commutators the usual Lieb-Robinson bounds for commutators. In the spirit of constructive QFT, this is done so as to allow the use of combinatorics of minimally connected graphs (tree expansions) in order to estimate time-dependent multi-commutators for interacting fermions. Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of the dynamics of quantum particles with interactions which are non-vanishing in the whole space and possibly time-dependent. To illustrate this, we prove that the bounds for multi-commutators of order three yield existence of fundamental solutions for the corresponding non-autonomous initial value problems for observables of interacting fermions on lattices. We further show how bounds for multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting fermions to external perturbations. All results also apply to quantum spin systems, with obvious modifications. However, we only explain the fermionic case in detail, in view of applications to microscopic quantum theory of electrical conduction discussed here and because this case is technically more involved.
Tropical limit for macroscopic systems in equilibrium defined as the formal limit of Boltzmann constant k going to 0 is discussed. It is shown that such tropical limit is well-adapted to analyse properties of systems with highly degenerated energy levels, particularly of frustrated systems like spin ice and spin glasses. Tropical free energy is a piecewise linear function of temperature, tropical entropy is a piecewise constant function and the system has energy for which tropical Gibbs probability has maximum. Properties of systems in the points of jump of entropy are studied. Systems with finite and infinitely many energy levels and phenomena of limiting temperatures are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا