No Arabic abstract
A class of conformally flat and asymptotically anti-de Sitter geometries involving profiles of scalar fields is studied from the point of view of gauged supergravity. The scalars involved in the solutions parameterise the SL(N,R)/SO(N) submanifold of the full scalar coset of the gauged supergravity, and are described by a symmetric potential with a universal form. These geometries descend via consistent truncation from distributions of D3-branes, M2-branes, or M5-branes in ten or eleven dimensions. We exhibit analogous solutions asymptotic to AdS_6 which descend from the D4-D8-brane system. We obtain the related six-dimensional theory by consistent reduction from massive type IIA supergravity. All our geometries correspond to states in the Coulomb branch of the dual conformal field theories. We analyze linear fluctuations of minimally coupled scalars and find both discrete and continuous spectra, but always bounded below.
Maximal and non-maximal supergravities in three spacetime dimensions allow for a large variety of semisimple and non-semisimple gauge groups, as well as complex gauge groups that have no analog in higher dimensions. In this contribution we review the recent progress in constructing these theories and discuss some of their possible applications.
Under reasonable assumptions about the complex structure of the set of singularities on the Coulomb branch of $mathcal N=2$ superconformal field theories, we present a relatively simple and elementary argument showing that the scaling dimension, $Delta$, of a Coulomb branch operator of a rank $r$ theory is allowed to take values in a finite set of rational numbers$Deltain big[frac{n}{m}big|n,minmathbb N, 0<mle n, gcd(n,m)=1, varphi(n)le2rbig]$ where $varphi(n)$ is the Euler totient function. The maximal dimension grows superlinearly with rank as $Delta_text{max} sim r lnln r$. This agrees with the recent result of Caorsi and Cecotti.
We develop new techniques for computing exact correlation functions of a class of local operators, including certain monopole operators, in three-dimensional $mathcal{N} = 4$ abelian gauge theories that have superconformal infrared limits. These operators are position-dependent linear combinations of Coulomb branch operators. They form a one-dimensional topological sector that encodes a deformation quantization of the Coulomb branch chiral ring, and their correlation functions completely fix the ($nleq 3$)-point functions of all half-BPS Coulomb branch operators. Using these results, we provide new derivations of the conformal dimension of half-BPS monopole operators as well as new and detailed tests of mirror symmetry. Our main approach involves supersymmetric localization on a hemisphere $HS^3$ with half-BPS boundary conditions, where operator insertions within the hemisphere are represented by certain shift operators acting on the $HS^3$ wavefunction. By gluing a pair of such wavefunctions, we obtain correlators on $S^3$ with an arbitrary number of operator insertions. Finally, we show that our results can be recovered by dimensionally reducing the Schur index of 4D $mathcal{N} = 2$ theories decorated by BPS t Hooft-Wilson loops.
We investigate properties of four point colour ordered scattering amplitudes in D=6 fishnet CFT. We show that such amplitudes are related via very simple relation to their D=4 counterparts considered previously in the literature. Exploiting this relation we obtain closed expression for such amplitudes and investigate its behaviour at weak and strong coupling. As by product of this investigation we also obtain generating function for on-shell D=6 Box ladder diagrams with l rungs.
We study dimensional reductions of M-theory/type II strings down to 6D in the presence of fluxes and spacetime filling branes and orientifold planes of different types. We classify all inequivalent orientifold projections giving rise to $mathcal{N}=(1,1)$ supergravities in 6D and work out the embedding tensor/fluxes dictionary for each of those. Finally we analyze the set of vacua for the different classes of reductions and find an abundance of no-scale type Minkowski vacua, as well as a few novel examples of (A)dS extrema.