We present a generalization of calibrations in which the calibration form is not closed. We use this to examine a class of supersymmetric p-brane worldvolume solitons.As an example we consider M5-brane worldvolume solitons in an AdS background.
In the neighborhood of a regular point, generalized Kahler geometry admits a description in terms of a single real function, the generalized Kahler potential. We study the local conditions for a generalized Kahler manifold to be a generalized Calabi-Yau manifold and we derive a non-linear PDE that the generalized Kahler potential has to satisfy for this to be true. This non-linear PDE can be understood as a generalization of the complex Monge-Ampere equation and its solutions give supergravity solutions with metric, dilaton and H-field.
We consider general black hole solutions in five-dimensional spacetime in the presence of a negative cosmological constant. We obtain a cosmological evolution via the gravity/gauge theory duality (holography) by defining appropriate boundary conditions on a four-dimensional boundary hypersurface. The standard counterterms are shown to renormalize the bare parameters of the system (the four-dimensional Newtons constant and cosmological constant). We discuss the thermodynamics of cosmological evolution and present various examples. The standard brane-world scenarios are shown to be special cases of our holographic construction.
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity, (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity, and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In $f(R)$ gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the gravity is always attractive and the effective Newton constant should be approximate constant satisfying the experimental bounds.
We give the nonabelian extension of the newly discovered N = (2, 2) two-dimensional vector multiplets. These can be used to gauge symmetries of sigma models on generalized Kahler geometries. Starting from the transformation rule for the nonabelian case we find covariant derivatives and gauge covariant field-strengths and write their actions in N = (2, 2) and N = (1, 1) superspace.
A general approach to description of multigravity models in D-dimensional space-time is presented. Different possibilities of generalization of the invariant volume are given. Then a most general form of the interaction potential is constructed, which for bigravity coincides with the Pauli-Fierz model. A thorough analysis of the model along the 3+1 expansion formalism is done. It is shown that the absence of ghosts the considered bigravity model is equivalent in the weak field limit to the massive gravity (the Pauli-Fierz model). Thus, on the concrete example it is shown, that the interaction between metrics leads to nonvanishing mass of graviton.