Do you want to publish a course? Click here

Generalized Calabi-Yau metric and Generalized Monge-Ampere equation

183   0   0.0 ( 0 )
 Added by Maxim Zabzine
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In the neighborhood of a regular point, generalized Kahler geometry admits a description in terms of a single real function, the generalized Kahler potential. We study the local conditions for a generalized Kahler manifold to be a generalized Calabi-Yau manifold and we derive a non-linear PDE that the generalized Kahler potential has to satisfy for this to be true. This non-linear PDE can be understood as a generalization of the complex Monge-Ampere equation and its solutions give supergravity solutions with metric, dilaton and H-field.



rate research

Read More

A quaternionic version of the Calabi problem on Monge-Ampere equation is introduced. It is a quaternionic Monge-Ampere equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercomplex manifold with holonomy in SL(n;H), uniqueness (up to a constant) of a solution is proven, as well as the zero order a priori estimate. The existence of solution is conjectured, similar to Calabi-Yau theorem. We reformulate this quaternionic equation as a special case of a complex Hessian equation, making sense on any complex manifold.
144 - Martin Rocek , Neal Wadhwa 2004
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.
109 - Qiuye Jia , Hai Lin 2018
We consider generalized complete intersection manifolds in the product space of projective spaces, and work out useful aspects pertaining to the cohomology of sheaves over them. First, we present and prove a vanishing theorem on the cohomology groups of sheaves for subvarieties of the ambient product space of projective spaces. We then prove an equivalence between configuration matrices of complete intersection Calabi-Yau manifolds. We also present a formula of the genus of curves in generalized complete intersection manifolds. Some of these curves arise as the fixed point locus of certain symmetry group action on the generalized complete intersection Calabi-Yau manifolds. We also make a blowing-up along the curves, by which one can generate new Calabi-Yau manifolds. Moreover, an approach on spectral sequences is used to compute Hodge numbers of generalized complete intersection Calabi-Yau manifolds and the genus of curves therein.
We formulate a Calabi-Yau type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahler class, we conjecture unique solvability of Gualtieris Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeros of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
We show that the complex cohomologies of Bott, Chern, and Aeppli and the symplectic cohomologies of Tseng and Yau arise in the context of type II string theory. Specifically, they can be used to count a subset of scalar moduli fields in Minkowski compactification with RR fluxes in the presence of either O5/D5 or O6/D6 brane sources, respectively. Further, we introduce a new set of cohomologies within the generalized complex geometry framework which interpolate between these known complex and symplectic cohomologies. The generalized complex cohomologies play the analogous role for counting massless fields for a general supersymmetric Minkowski type II compactification with Ramond-Ramond flux.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا