Do you want to publish a course? Click here

Non-Extremal D-instantons and the AdS/CFT Correspondence

96   0   0.0 ( 0 )
 Added by Andr\\'e Ploegh
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We investigate non-extremal D-instantons in an asymptotically $ AdS_5 times S^5$ background and the role they play in the $ AdS_5 / CFT_4$ correspondence. We find that the holographic dual operators of non-extremal D-instanton configurations do not correspond to self-dual Yang-Mills instantons, and we compute explicitly the deviation from self-duality. Furthermore, a class of non-extremal D-instantons yield Euclidean axionic wormhole solutions with two asymptotic boundaries. After Wick rotating, this provides a playground for investigating holography in the presence of cosmological singularities in a closed universe.



rate research

Read More

The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in the extremal case, e.g. k_1 = k_2 + k_3. First, the supergravity calculation involves analytic continuation in the k_i variables to define the product of a vanishing bulk coupling and an infinite integral over AdS. Second, extremal correlators are uniquely sensitive to mixing of the single-trace operators $tr X^k$ with protected multi-trace operators in the same representation of SU(4). We show that the calculation of extremal correlators from supergravity is subject to the same subtlety of regularization known for the 2-point functions, and we present a careful method which justifies the analytic continuation and shows that supergravity fields couple to single traces without admixture. We also study extremal n-point functions of chiral primary operators, and argue that Type IIB supergravity requires that their space-time form is a product of n-1 two-point functions (as in the free field approximation) multiplied by a non-renormalized coefficient. This non-renormalization property of extremal n-point functions is a new prediction of the AdS/CFT correspondence. As a byproduct of this work we obtain the cubic couplings $t phi phi$ and $s phi phi$ of fields in the dilaton and 5-sphere graviton towers of Type IIB supergravity on $AdS_5 times S^5$.
We construct the most general non-extremal deformation of the D-instanton solution with maximal rotational symmetry. The general non-supersymmetric solution carries electric charges of the SL(2,R) symmetry, which correspond to each of the three conjugacy classes of SL(2,R). Our calculations naturally generalise to arbitrary dimensions and arbitrary dilaton couplings. We show that for specific values of the dilaton coupling parameter, the non-extremal instanton solutions can be viewed as wormholes of non-extremal Reissner-Nordstrom black holes in one higher dimension. We extend this result by showing that for other values of the dilaton coupling parameter, the non-extremal instanton solutions can be uplifted to non-extremal non-dilatonic p-branes in p+1 dimensions higher. Finally, we attempt to consider the solutions as instantons of (compactified) type IIB superstring theory. In particular, we derive an elegant formula for the instanton action. We conjecture that the non-extremal D-instantons can contribute to the R^8-terms in the type IIB string effective action.
We study, using ADHM construction, instanton effects in an ${CN}=2$ superconformal $Sp(N)$ gauge theory, arising as effective field theory on a system of $N$ D-3-branes near an orientifold 7-plane and 8 D-7-branes in type I string theory. We work out the measure for the collective coordinates of multi-instantons in the gauge theory and compare with the measure for the collective coordinates of $(-1)$-branes in the presence of 3- and 7-branes in type I theory. We analyse the large-N limit of the measure and find that it admits two classes of saddle points: In the first class the space of collective coordinates has the geometry of $AdS_5times S^3$ which on the string theory side has the interpretation of the D-instantons being stuck on the 7-branes and therefore the resulting moduli space being $AdS_5times S^3$, In the second class the geometry is $AdS_5times S^5/Z_2$ and on the string theory side it means that the D-instantons are free to move in the 10-dimensional bulk. We discuss in detail a correlator of four O(8) flavour currents on the Yang-Mills side, which receives contributions from the first type of saddle points only, and show that it matches with the correlator obtained from $F^4$ coupling on the string theory side, which receives contribution from D-instantons, in perfect accord with the AdS/CFT correspondence. In particular we observe that the sectors with odd number of instantons give contribution to an O(8)-odd invariant coupling, thereby breaking O(8) down to SO(8) in type I string theory. We finally discuss correlators related to $R^4$, which receive contributions from both saddle points.
We study, using the dual AdS description, the vacua of field theories where some of the gauge symmetry is broken by expectation values of scalar fields. In such vacua, operators built out of the scalar fields acquire expectation values, and we show how to calculate them from the behavior of perturbations to the AdS background near the boundary. Specific examples include the ${cal N}=4$ SYM theory, and theories on D3 branes placed on orbifolds and conifolds. We also clarify some subtleties of the AdS/CFT correspondence that arise in this analysis. In particular, we explain how scalar fields in AdS space of sufficiently negative mass-squared can be associated with CFT operators of {it two} possible dimensions. All dimensions are bounded from below by $(d-2)/2$; this is the unitarity bound for scalar operators in $d$-dimensional field theory. We further argue that the generating functional for correlators in the theory with one choice of operator dimension is a Legendre transform of the generating functional in the theory with the other choice.
103 - Igor R. Klebanov 1999
We consider duality between type 0B string theory on $AdS_5times S^5$ and the planar CFT on $N$ electric D3-branes coincident with $N$ magnetic D3-branes. It has been argued that this theory is stable up to a critical value of the `t Hooft coupling but is unstable beyond that point. We suggest that from the gauge theory point of view the development of instability is associated with singularity in the dimension of the operator corresponding to the tachyon field via the AdS/CFT map. Such singularities are common in large $N$ theories because summation over planar graphs typically has a finite radius of convergence. Hence we expect transitions between stability and instability for string theories in AdS backgrounds that are dual to certain large $N$ gauge theories: if there are tachyons for large AdS radius then they may be stabilized by reducing the radius below a critical value of order the string scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا