Do you want to publish a course? Click here

Vacuum structure in supersymmetric Yang-Mills theories with any gauge group

99   0   0.0 ( 0 )
 Added by Andrei Smilga
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the pure supersymmetric Yang--Mills theories placed on a small 3-dimensional spatial torus with higher orthogonal and exceptional gauge groups. The problem of constructing the quantum vacuum states is reduced to a pure mathematical problem of classifying the flat connections on 3-torus. The latter problem is equivalent to the problem of classification of commuting triples of elements in a connected simply connected compact Lie group which is solved in this paper. In particular, we show that for higher orthogonal SO(N), N > 6, and for all exceptional groups the moduli space of flat connections involves several distinct connected components. The total number of vacuumstates is given in all cases by the dual Coxeter number of the group which agrees with the result obtained earlier with the instanton technique.



rate research

Read More

195 - V.G. Kac 1999
We study the question of existence and the number of normalized vacuum states in N = 4 super-Yang-Mills quantum mechanics for any gauge group. The mass deformation method is the simplest and clearest one. It allowed us to calculate the number of normalized vacuum states for all gauge groups. For all unitary groups, #(vac) = 1, but for the symplectic groups [starting from Sp(6) ], for the orthogonal groups [starting from SO(8)] and for all the exceptional groups, it is greater than one. We also discuss at length the functional integral method. We calculate the ``deficit term for some non-unitary groups and predict the value of the integral giving the ``principal contribution. The issues like the Born-Oppenheimer procedure to derive the effective theory and the manifestation of the localized vacua for the asymptotic effective wave functions are also discussed.
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first constructed by Witten, by means of an equivariant (or constrained) BRST cohomology. As standard gauge-fixed Yang-Mills theories suffer from the gauge copy (Gribov) ambiguity, one might wonder if and how this has repercussions for this analysis. The resolution of the small (infinitesimal) gauge copies, in general, affects the dynamics of the underlying theory. In particular, treating the Gribov problem for the standard Landau gauge condition in non-topological Yang-Mills theories strongly affects the dynamics of the theory in the infrared. In the current paper, although the theory is investigated with the same gauge condition, the effects of the copies turn out to be completely different. In other words: in both cases, the copies are there, but the effects are very different. As suggested by the tree-level exactness of the topological model in this gauge choice, the Gribov copies are shown to be inoffensive at the quantum level. To be more precise, following Gribov, we discuss the path integral restriction to the Gribov horizon. The associated gap equation, which fixes the so-called Gribov parameter, is however shown to only possess a trivial solution, making the restriction obsolete. We relate this to the absence of radiative corrections in both gauge and ghost sectors. We give further evidence by employing the renormalization group which shows that, for this kind of topological model, the gap equation indeed forbids the introduction of a massive Gribov parameter.
154 - R. Jackiw 1997
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
Integral invariants in maximally supersymmetric Yang-Mills theories are discussed in spacetime dimensions $4leq Dleq 10$ for $SU(k)$ gauge groups. It is shown that, in addition to the action, there are three special invariants in all dimensions. Two of these, the single- and double-trace $F^4$ invariants, are of Chern-Simons type in $D=9,10$ and BPS type in $Dleq 8$, while the third, the double-trace of two derivatives acting on $F^4$, can be expressed in terms of a gauge-invariant super-$D$-form in all dimensions. We show that the super-ten-forms for $D=10$ $F^4$ invariants have interesting cohomological properties and we also discuss some features of other invariants, including the single-trace $d^2 F^4$, which has a special form in $D=10$. The implications of these results for ultra-violet divergences are discussed in the framework of algebraic renormalisation.
For all types of N=4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly N=4 supersymmetric Yang-Mills (SYM) actions are explicitly given in the cases of (2,2) and critical (4,0) AdS supersymmetries. The N=4 vector multiplets and the corresponding actions are then reduced to (2,0) AdS superspace, in which only N=2 supersymmetry is manifest. Using the off-shell structure of the N=4 vector multiplets, we provide complete N=4 SYM actions in (2,0) AdS superspace for all types of N=4 AdS supersymmetry. In the case of (4,0) AdS supersymmetry, which admits a Euclidean counterpart, the resulting N=2 action contains a Chern-Simons term proportional to q/r, where r is the radius of AdS_3 and q is the R-charge of a chiral scalar superfield. The R-charge is a linear inhomogeneous function of X, an expectation value of the N=4 Cotton superfield. Thus our results explain the mysterious structure of N=4 supersymmetric Yang-Mills theories on S^3 discovered in arXiv:1401.7952. In the case of (3,1) AdS supersymmetry, which has no Euclidean counterpart, the SYM action contains both a Chern-Simons term and a chiral mass-like term. In the case of (2,2) AdS supersymmetry, which admits a Euclidean counterpart, the SYM action has no Chern-Simons and chiral mass-like terms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا