No Arabic abstract
Following on from earlier work relating modules of meromorphic bosonic conformal field theories to states representing solutions of certain simple equations inside the theories, we show, in the context of orbifold theories, that the intertwiners between twisted sectors are unique and described explicitly in terms of the states corresponding to the relevant modules. No explicit knowledge of the structure of the twisted sectors is required. Further, we propose a general set of sufficiency conditions, illustrated in the context of a third order no-fixed-point twist of a lattice theory, for verifying consistency of arbitrary orbifold models in terms of the states representing the twisted sectors.
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1$ theories in $D=4$ spacetime dimensions, can also be twin. We provide evidence from three different perspectives: (i) a twin S-fold construction, (ii) a double-copy argument and (iii) by identifying candidate twin holographically dual gauged supergravity theories. Furthermore, twin W-supergravity theories then follow by applying the double-copy prescription to exotic super conformal field theories.
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points are close to the real axis, the system typically exhibits walking behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the conjectured existence of complex conformal field theories at the fixed points.
By considering constraints on the dimensions of the Lie algebra corresponding to the weight one states of Z_2 and Z_3 orbifold models arising from imposing the appropriate modular properties on the graded characters of the automorphisms on the underlying conformal field theory, we propose a set of constructions of all but one of the 71 self-dual meromorphic bosonic conformal field theories at central charge 24. In the Z_2 case, this leads to an extension of the neighborhood graph of the even self-dual lattices in 24 dimensions to conformal field theories, and we demonstrate that the graph becomes disconnected.
We study the properties of operators in a unitary conformal field theory whose scaling dimensions approach each other for some values of the parameters and satisfy von Neumann-Wigner non-crossing rule. We argue that the scaling dimensions of such operators and their OPE coefficients have a universal scaling behavior in the vicinity of the crossing point. We demonstrate that the obtained relations are in a good agreement with the known examples of the level-crossing phenomenon in maximally supersymmetric $mathcal N=4$ Yang-Mills theory, three-dimensional conformal field theories and QCD.
We construct various boundary states in the coset conformal field theory G/H. The G/H theory admits the twisted boundary condition if the G theory has an outer automorphism of the horizontal subalgebra that induces an automorphism of the H theory. By introducing the notion of the brane identification and the brane selection rule, we show that the twisted boundary states of the G/H theory can be constructed from those of the G and the H theories. We apply our construction to the su(n) diagonal cosets and the su(2)/u(1) parafermion theory to obtain the twisted boundary states of these theories.