We study quantum gravity in $2+epsilon$ dimensions in such a way to preserve the volume preserving diffeomorphism invariance. In such a formulation, we prove the following trinity: the general covariance, the conformal invariance and the renormalization group flow to Einstein theory at long distance. We emphasize that the consistent and macroscopic universes like our own can only exist for matter central charge $0<c<25$. We show that the spacetime singularity at the big bang is resolved by the renormalization effect and universes are found to bounce back from the big crunch. Our formulation may be viewed as a Ginzburg-Landau theory which can describe both the broken and the unbroken phase of quantum gravity and the phase transition between them.
We study the renormalizability of quantum gravity near two dimensions. Our formalism starts with the tree action which is invariant under the volume preserving diffeomorphism. We identify the BRS invariance which originates from the full diffeomorphism invariance. We study the Ward-Takahashi identities to determine the general structure of the counter terms. We prove to all orders that the counter terms can be supplied by the coupling and the wave function renormalization of the tree action. The bare action can be constructed to be the Einstein action form which ensures the full diffeomorphism invariance.
We study the implications of scale invariance in four-dimensional quantum field theories. Imposing unitarity, we find that infinitely many matrix elements vanish in a suitable kinematical configuration. This vanishing is a nontrivial necessary condition for conformality. We provide an argument why this is expected to be a sufficient condition as well, thereby linking scale and conformal invariance in unitary theories. We also discuss possible exceptions to our argument.
We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a `partially massless response. The on-shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair.
In a recent work, it has been pointed out that certain observables of the massless scalar field theory in a static spherically symmetric background exhibit a universal behavior at large distances. More precisely, it was shown that, unlike what happens in the case the coupling to the curvature xi is generic, for the special cases xi=0 and xi = 1/6 the large distance behavior of the expectation value <T^{mu}_{ u}> turns out to be independent of the internal structure of the gravitational source. Here, we address a higher dimensional generalization of this result: We first compute the difference between a black hole and a static spherically symmetric star for the observables <phi^2> and <T^{mu}_{ u}> in the far field limit. Thus, we show that the conformally invariant massless scalar field theory in a static spherically symmetric background exhibits such universality phenomenon in Dgeq 4 dimensions. Also, using the one-loop effective action, we compute <T^{mu}_{ u}> for a weakly gravitating object. These results lead to the explicit expression of the expectation value <T^{mu}_{ u}> for a Schwarzschild-Tangherlini black hole in the far field limit. As an application, we obtain quantum corrections to the gravitational potential in D dimensions, which for D=4 are shown to agree with the one-loop correction to the graviton propagator previously found in the literature.
We discuss some general aspects of renormalization group flows in four dimensions. Every such flow can be reinterpreted in terms of a spontaneously broken conformal symmetry. We analyze in detail the consequences of trace anomalies for the effective action of the Nambu-Goldstone boson of broken conformal symmetry. While the c-anomaly is algebraically trivial, the a-anomaly is non-Abelian, and leads to a positive-definite universal contribution to the S-matrix of 2->2 dilaton scattering. Unitarity of the S-matrix results in a monotonically decreasing function that interpolates between the Euler anomalies in the ultraviolet and the infrared, thereby establishing the a-theorem.