Do you want to publish a course? Click here

Mirror Symmetry of K3 and Torus

68   0   0.0 ( 0 )
 Added by Katsuyuki Sugiyama
 Publication date 1993
  fields
and research's language is English




Ask ChatGPT about the research

We discuss a K3 and torus from view point of mirror symmetry. We calculate the periods of the K3 surface and obtain the mirror map, the two-point correlation function, and the prepotential. Then we find there is no instanton correction on K3 (also torus), which is expected from view point of Algebraic geometry.



rate research

Read More

We analyze the locus, together with multiplicities, of bad conformal field theories in the compactified moduli space of N=(2,2) superconformal field theories in the context of the generalization of the Batyrev mirror construction using the gauged linear sigma-model. We find this discriminant of singular theories is described beautifully by the GKZ A-determinant but only if we use a noncompact toric Calabi-Yau variety on the A-model side and logarithmic coordinates on the B-model side. The two are related by local mirror symmetry. The corresponding statement for the compact case requires changing multiplicities in the GKZ determinant. We then describe a natural structure for monodromies around components of this discriminant in terms of spherical functors. This can be considered a categorification of the GKZ A-determinant. Each component of the discriminant is naturally associated with a category of massless D-branes.
Localization methods have produced explicit expressions for the sphere partition functions of (2,2) superconformal field theories. The mirror symmetry conjecture predicts an IR duality between pairs of Abelian gauged linear sigma models, a class of which describe families of Calabi-Yau manifolds realizable as complete intersections in toric varieties. We investigate this prediction for the sphere partition functions and find agreement between that of a model and its mirror up to the scheme-dependent ambiguities inherent in the definitions of these quantities.
We discuss homological mirror symmetry for the conifold from the point of view of the Strominger-Yau-Zaslow conjecture.
We study a supersymmetry breaking deformation of the 2d N=(2,2) cigar=Liouville mirror pair, first introduced by Hori and Kapustin. We show that mirror symmetry flows in the infra-red to 2d bosonization, with the theories reducing to massive Thirring and Sine-Gordon respectively. The exact bosonization map emerges at one-loop. We further compactify non-supersymmetric 3d bosonization dualities on a circle and argue that these too flow to 2d bosonization at long distances.
We consider the superconformal quantum mechanics associated to BPS black holes in type IIB Calabi-Yau compactifications. This quantum mechanics describes the dynamics of D-branes in the near-horizon attractor geometry of the black hole. In many cases, the black hole entropy can be found by counting the number of chiral primaries in this quantum mechanics. Both the attractor mechanism and notions of marginal stability play important roles in generating the large number of microstates required to explain this entropy. We compute the microscopic entropy explicitly in a few different cases, where the theory reduces to quantum mechanics on the moduli space of special Lagrangians. Under certain assumptions, the problem may be solved by implementing mirror symmetry as three T-dualities: this is essentially the mirror of a calculation by Gaiotto, Strominger and Yin. In some simple cases, the calculation may be done in greater generality without resorting to conjectures about mirror symmetry. For example, the K3xT^2 case may be studied precisely using the Fourier-Mukai transform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا