Do you want to publish a course? Click here

Two dimensional QCD is a one dimensional Kazakov-Migdal model

101   0   0.0 ( 0 )
 Added by Alessandro D'Adda
 Publication date 1993
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the partition functions of QCD in two dimensions on a cylinder and on a torus in the gauge $partial_{0} A_{0} = 0$ by integrating explicitly over the non zero modes of the Fourier expansion in the periodic time variable. The result is a one dimensional Kazakov-Migdal matrix model with eigenvalues on a circle rather than on a line. We prove that our result coincides with the standard expansion in representations of the gauge group. This involves a non trivial modular transformation from an expansion in exponentials of $g^2$ to one in exponentials of $1/g^2$. Finally we argue that the states of the $U(N)$ or $SU(N)$ partition function can be interpreted as a gas of N free fermions, and the grand canonical partition function of such ensemble is given explicitly as an infinite product.

rate research

Read More

We propose a stochastic particle model in (1+1)-dimensions, with one dimension corresponding to rapidity and the other one to the transverse size of a dipole in QCD, which mimics high-energy evolution and scattering in QCD in the presence of both saturation and particle-number fluctuations, and hence of Pomeron loops. The model evolves via non-linear particle splitting, with a non-local splitting rate which is constrained by boost-invariance and multiple scattering. The splitting rate saturates at high density, so like the gluon emission rate in the JIMWLK evolution. In the mean field approximation obtained by ignoring fluctuations, the model exhibits the hallmarks of the BK equation, namely a BFKL-like evolution at low density, the formation of a traveling wave, and geometric scaling. In the full evolution including fluctuations, the geometric scaling is washed out at high energy and replaced by diffusive scaling. It is likely that the model belongs to the universality class of the reaction-diffusion process. The analysis of the model sheds new light on the Pomeron loops equations in QCD and their possible improvements.
115 - M. Billo , M. Caselle , A. Dadda 2000
We consider two-dimensional Yang-Mills theories on arbitrary Riemann surfaces. We introduce a generalized Yang-Mills action, which coincides with the ordinary one on flat surfaces but differs from it in its coupling to two-dimensional gravity. The quantization of this theory in the unitary gauge can be consistently performed taking into account all the topological sectors arising from the gauge-fixing procedure. The resulting theory is naturally interpreted as a Matrix String Theory, that is as a theory of covering maps from a two-dimensional world-sheet to the target Riemann surface.
We introduce a full set of rules to directly express all $M$-point conformal blocks in one- and two-dimensional conformal field theories, irrespective of the topology. The $M$-point conformal blocks are power series expansion in some carefully-chosen conformal cross-ratios. We then prove the rules for any topology constructively with the help of the known position space operator product expansion. To this end, we first compute the action of the position space operator product expansion on the most general function of position space coordinates relevant to conformal field theory. These results provide the complete knowledge of all $M$-point conformal blocks with arbitrary external and internal quasi-primary operators (including arbitrary spins in two dimensions) in any topology.
Two-dimensional SU$(N)$ gauge theory coupled to a Majorana fermion in the adjoint representation is a nice toy model for higher-dimensional gauge dynamics. It possesses a multitude of gluinoball bound states whose spectrum has been studied using numerical diagonalizations of the light-cone Hamiltonian. We extend this model by coupling it to $N_f$ flavors of fundamental Dirac fermions (quarks). The extended model also contains meson-like bound states, both bosonic and fermionic, which in the large-$N$ limit decouple from the gluinoballs. We study the large-$N$ meson spectrum using the Discretized Light-Cone Quantization (DLCQ). When all the fermions are massless, we exhibit an exact $mathfrak{osp}(1|4)$ symmetry algebra that leads to an infinite number of degeneracies in the DLCQ approach. More generally, we show that many single-trace states in the theory are threshold bound states that are degenerate with multi-trace states. These exact degeneracies can be explained using the Kac-Moody algebra of the SU$(N)$ current. We also present strong numerical evidence that additional threshold states appear in the continuum limit. Finally, we make the quarks massive while keeping the adjoint fermion massless. In this case too, we observe some exact degeneracies that show that the spectrum of mesons becomes continuous above a certain threshold. This demonstrates quantitatively that the fundamental string tension vanishes in the massless adjoint QCD$_2$.
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions (2D), especially in models of closely packed perfect arrays of 1D quantum wires, each being described as a LL. For instance, such coupled-wire models have been successfully used to construct 2D anisotropic non-Fermi liquids, various quantum Hall states, topological phases, and quantum spin liquids. Despite these exciting theoretical developments, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moire superlattice made of twisted bilayer tungsten ditelluride (tWTe$_{2}$). Originating from the anisotropic lattice of the monolayer, the moire pattern of tWTe$_{2}$ hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tunable by the twist angle between layers. At a twist angle of ~ 5 degrees, we find that hole-doped tWTe$_{2}$ exhibits exceptionally large transport anisotropy with a resistance ratio of ~ 1000 between two orthogonal in-plane directions, suggesting the formation of 1D channels. The conductance measurement reveals a power-law scaling behavior, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of 2D correlated and topological quantum phases based on coupled-wire models and LL physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا