Do you want to publish a course? Click here

All Global One- and Two-Dimensional Higher-Point Conformal Blocks

90   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a full set of rules to directly express all $M$-point conformal blocks in one- and two-dimensional conformal field theories, irrespective of the topology. The $M$-point conformal blocks are power series expansion in some carefully-chosen conformal cross-ratios. We then prove the rules for any topology constructively with the help of the known position space operator product expansion. To this end, we first compute the action of the position space operator product expansion on the most general function of position space coordinates relevant to conformal field theory. These results provide the complete knowledge of all $M$-point conformal blocks with arbitrary external and internal quasi-primary operators (including arbitrary spins in two dimensions) in any topology.



rate research

Read More

We compute $M$-point conformal blocks with scalar external and exchange operators in the so-called comb configuration for any $M$ in any dimension $d$. Our computation involves repeated use of the operator product expansion to increase the number of external fields. We check our results in several limits and compare with the expressions available in the literature when $M=5$ for any $d$, and also when $M$ is arbitrary while $d=1$.
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar operators, reducing them to a linear combination of blocks with scalars exchanged. We additionally derive recursion relations for the conformal blocks which appear when one of the external operators in the 5-point function has spin 1 or 2. Our results allow us to formulate positivity constraints using 5-point functions which describe the expectation value of the energy operator in bilocal states created by two scalars.
We compute $d$-dimensional scalar six-point conformal blocks in the two possible topologies allowed by the operator product expansion. Our computation is a simple application of the embedding space operator product expansion formalism developed recently. Scalar six-point conformal blocks in the comb channel have been determined not long ago, and we present here the first explicit computation of the scalar six-point conformal blocks in the remaining inequivalent topology. For obvious reason, we dub the other topology the snowflake channel. The scalar conformal blocks, with scalar external and exchange operators, are presented as a power series expansion in the conformal cross-ratios, where the coefficients of the power series are given as a double sum of the hypergeometric type. In the comb channel, the double sum is expressible as a product of two ${}_3F_2$-hypergeometric functions. In the snowflake channel, the double sum is expressible as a Kampe de Feriet function where both sums are intertwined and cannot be factorized. We check our results by verifying their consistency under symmetries and by taking several limits reducing to known results, mostly to scalar five-point conformal blocks in arbitrary spacetime dimensions.
376 - R. Jackiw , S.-Y. Pi 2012
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even though the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).
Seven-point functions have two inequivalent topologies or channels. The comb channel has been computed previously and here we compute scalar conformal blocks in the extended snowflake channel in $d$ dimensions. Our computation relies on the known action of the differential operator that sets up the operator product expansion in embedding space. The scalar conformal blocks in the extended snowflake channel are obtained as a power series expansion in the conformal cross-ratios whose coefficients are a triple sum of the hypergeometric type. This triple sum factorizes into a single sum and a double sum. The single sum can be seen as originating from the comb channel and is given in terms of a ${}_3F_2$-hypergeometric function, while the double sum originates from the snowflake channel which corresponds to a Kampe de Feriet function. We verify that our results satisfy the symmetry properties of the extended snowflake topology. Moreover, we check that the behavior of the extended snowflake conformal blocks under several limits is consistent with known results. Finally, we conjecture rules leading to a partial construction of scalar $M$-point conformal blocks in arbitrary topologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا