We discuss the errors introduced by level truncation in the study of boundary renormalisation group flows by the Truncated Conformal Space Approach. We show that the TCSA results can have the qualitative form of a sequence of RG flows between different conformal boundary conditions. In the case of a perturbation by the field phi(13), we propose a renormalisation group equation for the coupling constant which predicts a fixed point at a finite value of the TCSA coupling constant and we compare the predictions with data obtained using TBA equations.
The Zamolodchikov c-theorem has led to important new insights in our understanding of the renormalisation group and the geometry of the space of QFTs. Here, we review the parallel developments of the search for a higher-dimensional generalisation of the c-theorem and of the Local Renormalisation Group. The idea of renormalisation with position-dependent couplings, running under local Weyl scaling, is traced from its early realisations to the elegant modern formalism of the local renormalisation group. The key role of the associated Weyl consistency conditions in establishing RG flow equations for the coefficients of the trace anomaly in curved spacetime, and their relation to the c-theorem and four-dimensional a-theorem, is explained in detail. A number of different derivations of the c-theorem in two dimensions are presented -- using spectral functions, RG analysis of Green functions of the energy-momentum tensor T_{mu nu}, and dispersion relations -- and are generalised to four dimensions. The obstruction to establishing monotonic C-functions related to the beta_c and beta_b trace anomaly coefficients in four dimensions is discussed. The possibility of deriving an a-theorem, involving the coefficient beta_a of the Euler-Gauss-Bonnet density in the trace anomaly, is explored initially by formulating the QFT on maximally symmetric spaces. Then the formulation of the weak a-theorem using a dispersion relation for four-point functions of T^mu_mu is presented. Finally, we describe the application of the local renormalisation group to the issue of limit cycles in theories with a global symmetry and it is shown how this sheds new light on the geometry of the space of couplings in QFT.
In this paper we continue the study of the truncated conformal space approach to perturbed boundary conformal field theories. This approach to perturbation theory suffers from a renormalisation of the coupling constant and a multiplicative renormalisation of the Hamiltonian. We show how these two effects can be predicted by both physical and mathematical arguments and prove that they are correct to leading order for all states in the TCSA system. We check these results using the TCSA applied to the tri-critical Ising model and the Yang-Lee model. We also study the TCSA of an irrelevant (non-renormalisable) perturbation and find that, while the convergence of the coupling constant and energy scales are problematic, the renormalised and rescaled spectrum remain a very good fit to the exact result, and we find a numerical relationship between the IR and UV couplings describing a particular flow. Finally we study the large coupling behaviour of TCSA and show that it accurately encompasses several different fixed points.
The Polchinski version of the exact renormalisation group equations is applied to multicritical fixed points, which are present for dimensions between two and four, for scalar theories using both the local potential approximation and its extension, the derivative expansion. The results are compared with the epsilon expansion by showing that the non linear differential equations may be linearised at each multicritical point and the epsilon expansion treated as a perturbative expansion. The results for critical exponents are compared with corresponding epsilon expansion results from standard perturbation theory. The results provide a test for the validity of the local potential approximation and also the derivative expansion. An alternative truncation of the exact RG equation leads to equations which are similar to those found in the derivative expansion but which gives correct results for critical exponents to order $epsilon$ and also for the field anomalous dimension to order $epsilon^2$. An exact marginal operator for the full RG equations is also constructed.
In this paper we continue the study of the truncated conformal space approach to perturbed conformal field theories, this time applied to bulk perturbations and focusing on the leading truncation-dependent corrections to the spectrum. We find expressions for the leading terms in the ground state energy divergence, the coupling constant renormalisation and the energy rescaling. We apply these methods to problems treated in two seminal papers and show how these RG improvements greatly increase the predictive power of the TCSA approach. One important outcome is that the TCSA spectrum of excitations is predicted not to converge for perturbations of conformal weight greater than 3/4, but the ratios of excitation energies should converge.
For arbitrary scalar QFTs in four dimensions, renormalisation group equations of quartic and cubic interactions, mass terms, as well as field anomalous dimensions are computed at three-loop order in the $overline{text{MS}}$ scheme. Utilising pre-existing literature expressions for a specific model, loop integrals are avoided and templates for general theories are obtained. We reiterate known four-loop expressions, and derive $beta$ functions for scalar masses and cubic interactions from it. As an example, the results are applied to compute all renormalisation group equations in $U(n) times U(n)$ scalar theories.