Do you want to publish a course? Click here

Renormalization Group Treatment of Nonrenormalizable Interactions

94   0   0.0 ( 0 )
 Added by Grigori Vartanov
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The structure of the UV divergencies in higher dimensional nonrenormalizable theories is analysed. Based on renormalization operation and renormalization group theory it is shown that even in this case the leading divergencies (asymptotics) are governed by the one-loop diagrams the number of which, however, is infinite. Explicit expression for the one-loop counter term in an arbitrary D-dimensional quantum field theory without derivatives is suggested. This allows one to sum up the leading asymptotics which are independent of the arbitrariness in subtraction of higher order operators. Diagrammatic calculations in a number of scalar models in higher loops are performed to be in agreement with the above statements. These results do not support the idea of the naive power-law running of couplings in nonrenormalizable theories and fail (with one exception) to reveal any simple closed formula for the leading terms.



rate research

Read More

Renormalization group calculations are used to give exact solutions for rigidity percolation on hierarchical lattices. Algebraic scaling transformations for a simple example in two dimensions produce a transition of second order, with an unstable critical point and associated scaling laws. Values are provided for the order parameter exponent $beta = 0.0775$ associated with the spanning rigid cluster and also for $d u = 3.533$ which is associated with an anomalous lattice dimension $d$ and the divergence in the correlation length near the transition. In addition we argue that the number of floppy modes $F$ plays the role of a free energy and hence find the exponent $alpha$ and establish hyperscaling. The exact analytical procedures demonstrated on the chosen example readily generalize to wider classes of hierarchical lattice.
We show how the renormalons emerge from the renormalization group equation with a priori no reference to any Feynman diagrams. The proof is rather given by recasting the renormalization group equation as a resurgent equation studied in the mathematical literature, which describes a function with an infinite number of singularities in the positive axis of the Borel plane. Consistency requires a one-to-one correspondence between the existence of such kind of equation and the actual (generalized) Borel resummation of the renormalons through a one-parameter transseries. Our finding suggests how non-perturbative contributions can affect the running couplings. We also discuss these concepts within the context of gauge theories, making use of the large number of flavor expansion.
The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilson action in the exact renormalization group (ERG) formalism. By imitating the structure of this connection, we propose an ERG differential equation that preserves manifest gauge invariance in Yang--Mills theory. Our construction in continuum theory can be extended to lattice gauge theory.
The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation theory in arbitrary high odd space-time dimension. Due to the self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The new effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. The original dimensionful gauge coupling plays a role of mass and is also logarithmically renormalized. Comments on the unitarity of the resulting theory are given.
We present a renormalization-group (RG) analysis of dark matter interactions with the standard model, where dark matter is allowed to be a component of an electroweak multiplet, and has a mass at or below the electroweak scale. We consider, in addition to the gauge interactions, the complete set of effective operators for dark matter interactions with the standard model above the weak scale, up to and including mass dimension six. We calculate the RG evolution of these operators from the high scale Lambda down to the weak scale, and perform the matching to the tower of effective theories below the weak scale. We also summarize the RG evolution below the weak scale and the matching to the nonrelativistic nuclear interactions. We present several numerical examples and show that in certain cases the dark matter - nucleus scattering rate can change by orders of magnitude when the electroweak running is included.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا