We investigate a non-trivial extension of the $D-$dimensional Poincare algebra. Matrix representations are obtained. The bosonic multiplets contain antisymmetric tensor fields. It turns out that this symmetry acts in a natural geometric way on these $p-$forms. Some field theoretical aspects of this symmetry are studied and invariant Lagrangians are explicitly given.
Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional flat space-time on the basis of a BRST approach extending the results of [arXiv:1412.0200[hep-th]]. A Lorentz-invariant resolution of the BRST complex within both the constrained and unconstrained BRST formulations produces a gauge-invariant Lagrangian entirely in terms of the initial tensor field $Phi_{[mu]_{hat{s}_1}, [mu]_{hat{s}_2}}$ subject to $Y[hat{s}_1,hat{s}_2]$ with an additional tower of gauge parameters realizing the $(hat{s}_1-1)$-th stage of reducibility with a specific dependence on the value $(hat{s}_1-hat{s}_2)=0,1,...,hat{s}_1$. Minimal BRST--BV action is suggested, being proper solution to the master equation in the minimal sector and providing objects appropriate to construct interacting Lagrangian formulations with mixed-antisymmetric fields in a general framework.
We study the homology and cohomology groups of super Lie algebra of supersymmetries and of super Poincare Lie algebra in various dimensions. We give complete answers for (non-extended) supersymmetry in all dimensions $leq 11$. For dimensions $D=10,11$ we describe also the cohomology of reduction of supersymmetry Lie algebra to lower dimensions. Our methods can be applied to extended supersymmetry algebra.
We show how some classical r-matrices for the D=4 Poincare algebra can be supersymmetrized by an addition of part depending on odd supercharges. These r-matrices for D=4 super-Poincare algebra can be presented as a sum of the so-called subordinated r-matrices of super-Abelian and super-Jordanian type. Corresponding twists describing quantum deformations are obtained in an explicit form. These twists are the super-extensions of twists obtained in the paper arXiv:0712.3962.
A general procedure to describe the coupling $U_A (1) times U_B (1)$ between antisymmetric gauge fields is proposed. For vector gauge theories the inclusion of magnetic mixing in the hidden sector induces millicharges -- in principle -- observable. We extend the analysis to antisymmetric fields and the extension to higher order monopoles is discussed. A modification of the model discussed in cite{Ibarra} with massless antisymmetric fields as dark matter is also considered and the total cross section ratio are found and discussed.
We perform the quantisation of antisymmetric tensor-spinors (fermionic $p$-forms) $psi^alpha_{mu_1 dots mu_p}$ using the Batalin-Vilkovisky field-antifield formalism. Just as for the gravitino ($p=1$), an extra propagating Nielsen-Kallosh ghost appears in quadratic gauges containing a differential operator. The appearance of this `third ghost is described within the BV formalism for arbitrary reducible gauge theories. We then use the resulting spectrum of ghosts and the Atiyah-Singer index theorem to compute gravitational anomalies.
G. Moultaka
,M. Rausch de Traubenberg
,A. Tanasa
.
(2004)
.
"Non-trivial extension of the Poincare algebra for antisymmetric gauge fields"
.
Adrian Tanasa
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا