Do you want to publish a course? Click here

Homology of Lie algebra of supersymmetries and of super Poincare Lie algebra

181   0   0.0 ( 0 )
 Added by Albert Schwarz
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the homology and cohomology groups of super Lie algebra of supersymmetries and of super Poincare Lie algebra in various dimensions. We give complete answers for (non-extended) supersymmetry in all dimensions $leq 11$. For dimensions $D=10,11$ we describe also the cohomology of reduction of supersymmetry Lie algebra to lower dimensions. Our methods can be applied to extended supersymmetry algebra.



rate research

Read More

We study the homology and cohomology groups of super Lie algebra of supersymmetries and of super Poincare algebra. We discuss in detail the calculation in dimensions D=10 and D=6. Our methods can be applied to extended supersymmetry algebra and to other dimensions.
92 - Jan Troost 2020
We define a supersymmetric quantum mechanics of fermions that take values in a simple Lie algebra. We summarize what is known about the spectrum and eigenspaces of the Laplacian which corresponds to the Koszul differential d. Firstly, we concentrate on the zero eigenvalue eigenspace which coincides with the Lie algebra cohomology. We provide physical insight into useful tools to compute the cohomology, namely Morse theory and the Hochschild-Serre spectral sequence. We list explicit generators for the Lie algebra cohomology ring. Secondly, we concentrate on the eigenspaces of the supersymmetric quantum mechanics with maximal eigenvalue at given fermion number. These eigenspaces have an explicit description in terms of abelian ideals of a Borel subalgebra of the simple Lie algebra. We also introduce a model of Lie algebra valued fermions in two dimensions, where the spaces of maximal eigenvalue acquire a cohomological interpretation. Our work provides physical interpretations of results by mathematicians, and simplifies the proof of a few theorems. Moreover, we recall that these mathematical results play a role in pure supersymmetric gauge theory in four dimensions, and observe that they give rise to a canonical representation of the four-dimensional chiral ring.
213 - A. Borowiec 2008
We show how some classical r-matrices for the D=4 Poincare algebra can be supersymmetrized by an addition of part depending on odd supercharges. These r-matrices for D=4 super-Poincare algebra can be presented as a sum of the so-called subordinated r-matrices of super-Abelian and super-Jordanian type. Corresponding twists describing quantum deformations are obtained in an explicit form. These twists are the super-extensions of twists obtained in the paper arXiv:0712.3962.
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then we decide its conformal algebra $B$ with $C[partial]$-basis ${L_alpha(w),|,alphainZ}$ and $lambda$-brackets $[L_alpha(w)_lambda L_beta(w)]=(alphapartial+(alpha+beta)lambda)L_{alpha+beta}(w)$. Finally, we give a classification of free intermediate series $B$-modules.
From a commutative associative algebra $A$, the infinite dimensional unital 3-Lie Poisson algebra~$mathfrak{L}$~is constructed, which is also a canonical Nambu 3-Lie algebra, and the structure of $mathfrak{L}$ is discussed. It is proved that: (1) there is a minimal set of generators $S$ consisting of six vectors; (2) the quotient algebra $mathfrak{L}/mathbb{F}L_{0, 0}^0$ is a simple 3-Lie Poisson algebra; (3) four important infinite dimensional 3-Lie algebras: 3-Virasoro-Witt algebra $mathcal{W}_3$, $A_omega^delta$, $A_{omega}$ and the 3-$W_{infty}$ algebra can be embedded in $mathfrak{L}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا