Do you want to publish a course? Click here

Integral Geometry on the Lobachevsky Plane and the Conformal Wess-Zumino-Witten Model of Strings on an ADS3 Background

102   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main purpose of the report is to provide some argumentation that three seemingly distinct approaches of 1. Giveon, Kutasov and Seiberg (hep-th/9806194); 2. Hemming, Keski-Vakkuri (hep-th/0110252); Maldacena, Ooguri (hep-th/0001053) and 3. I. Bars (hep-th/9503205) can be investigated by applying the mathematical methods of integral geometry on the Lobachevsky plane, developed previously by Gelfand, Graev and Vilenkin. All these methods can be used for finding the transformations, leaving the Kac-Moody and Virasoro algebras invariant. The near-distance limit of the Conformal Field Theory of the SL(2, R) WZW model of strings on an ADS3 background can also be interpreted in terms of the Lobachevsky Geometry : the non - euclidean distance is conserved and the Lobachevsky formulae for the angle of parallelism is recovered. Some preliminary technique from integral geometry for inverting the modified integral representation for the Kac- Moody algebra has been demonstrated.



rate research

Read More

63 - Jan Troost 2017
We continue the study of the gl(1|1) Wess-Zumino-Witten model. The Knizhnik-Zamolodchikov equations for the one, two, three and four point functions are analyzed, for vertex operators corresponding to typical and projective representations. We illustrate their interplay with the logarithmic global conformal Ward identities. We compute the four point function for one projective and three typical representations. Three coupled first order Knizhnik-Zamolodchikov equations are integrated consecutively in terms of generalized hypergeometric functions, and we assemble the solutions into a local correlator. Moreover, we prove crossing symmetry of the four point function of four typical representations at generic momenta. Throughout, the map between the gl(1|1) Wess-Zumino-Witten model and symplectic fermions is exploited and extended.
We revisit various topological issues concerning four-dimensional ungauged and gauged Wess-Zumino-Witten (WZW) terms for $SU$ and $SO$ quantum chromodynamics (QCD), from the modern bordism point of view. We explain, for example, why the definition of the $4d$ WZW terms requires the spin structure. We also discuss how the mixed anomaly involving the 1-form symmetry of $SO$ QCD is reproduced in the low-energy sigma model.
Perturbations of a class of semiclassical spiky strings in three dimensional Anti-de Sitter (AdS) spacetime, are investigated using the well-known Jacobi equations for small, normal deformations of an embedded timelike surface. We show that the equation for the perturbation scalar which governs the behaviour of such small deformations, is a special case of the well-known Darboux-Treibich-Verdier (DTV) equation. The eigenvalues and eigensolutions of the DTV equation for our case are obtained by solving certain continued fractions numerically. These solutions are thereafter utilised to further demonstrate that there do exist finite perturbations of the AdS spiky strings. Our results therefore establish that the spiky string configurations in AdS3 are indeed stable against small fluctuations. Comments on future possibilities of work are included in conclusion.
We consider the problem of the decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider $SU(2)_k$ as a case study and then generalise to an arbitrary non-abelian Lie group. We find that at leading order in the subsystem size $L$ the entanglement is equally distributed among the different sectors labelled by the irreducible representation of the associated algebra. We also identify the leading term that breaks this equipartition: it does not depend on $L$ but only on the dimension of the representation. Moreover, a $loglog L$ contribution to the Renyi entropies exhibits a universal form related to the underlying symmetry group of the model, i.e. the dimension of the Lie group.
84 - Kai Kratzert 2003
We investigate the breakdown of supersymmetry at finite temperature. While it has been proven that temperature always breaks supersymmetry, the nature of this breaking is less clear. On the one hand, a study of the Ward-Takahashi identities suggests a spontaneous breakdown of supersymmetry without the existence of a Goldstino, while on the other hand it has been shown that in any supersymmetric plasma there should exist a massless fermionic collective excitation, the phonino. Aim of this work is to unify these two approaches. For the Wess-Zumino model, it is shown that the phonino exists and contributes to the supersymmetric Ward-Takahashi identities in the right way displaying that supersymmetry is broken spontaneously with the phonino as the Goldstone fermion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا