Do you want to publish a course? Click here

Revisiting Wess-Zumino-Witten terms

94   0   0.0 ( 0 )
 Added by Yasunori Lee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit various topological issues concerning four-dimensional ungauged and gauged Wess-Zumino-Witten (WZW) terms for $SU$ and $SO$ quantum chromodynamics (QCD), from the modern bordism point of view. We explain, for example, why the definition of the $4d$ WZW terms requires the spin structure. We also discuss how the mixed anomaly involving the 1-form symmetry of $SO$ QCD is reproduced in the low-energy sigma model.



rate research

Read More

We consider the problem of the decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider $SU(2)_k$ as a case study and then generalise to an arbitrary non-abelian Lie group. We find that at leading order in the subsystem size $L$ the entanglement is equally distributed among the different sectors labelled by the irreducible representation of the associated algebra. We also identify the leading term that breaks this equipartition: it does not depend on $L$ but only on the dimension of the representation. Moreover, a $loglog L$ contribution to the Renyi entropies exhibits a universal form related to the underlying symmetry group of the model, i.e. the dimension of the Lie group.
63 - Jan Troost 2017
We continue the study of the gl(1|1) Wess-Zumino-Witten model. The Knizhnik-Zamolodchikov equations for the one, two, three and four point functions are analyzed, for vertex operators corresponding to typical and projective representations. We illustrate their interplay with the logarithmic global conformal Ward identities. We compute the four point function for one projective and three typical representations. Three coupled first order Knizhnik-Zamolodchikov equations are integrated consecutively in terms of generalized hypergeometric functions, and we assemble the solutions into a local correlator. Moreover, we prove crossing symmetry of the four point function of four typical representations at generic momenta. Throughout, the map between the gl(1|1) Wess-Zumino-Witten model and symplectic fermions is exploited and extended.
Recent experiments on twisted bilayer graphene have shown a high-temperature parent state with massless Dirac fermions and broken electronic flavor symmetry; superconductivity and correlated insulators emerge from this parent state at lower temperatures. We propose that the superconducting and correlated insulating orders are connected by Wess-Zumino-Witten terms, so that defects of one order contain quanta of another order and skyrmion fluctuations of the correlated insulator are a mechanism for superconductivity. We present a comprehensive listing of plausible low-temperature orders, and the parent flavor symmetry breaking orders. The previously characterized topological nature of the band structure of twisted bilayer graphene plays an important role in this analysis.
172 - J.A. Gracey 2021
We renormalize the Wess-Zumino model at five loops in both the minimal subtraction (MSbar) and momentum subtraction (MOM) schemes. The calculation is carried out automatically using a routine that performs the D-algebra. Generalizations of the model to include $O(N)$ symmetry as well as the case with real and complex tensor couplings are also considered. We confirm that the emergent SU(3) symmetry of six dimensional O(N) phi^3 theory is also a property of the tensor O(N) model. With the new loop order precision we compute critical exponents in the epsilon expansion for several of these generalizations as well as the XYZ model in order to compare with conformal bootstrap estimates in three dimensions. For example at five loops our estimate for the correction to scaling exponent is in very good agreement for the Wess-Zumino model which equates to the emergent supersymmetric fixed point of the Gross-Neveu-Yukawa model. We also compute the rational number that is part of the six loop MSbar beta-function.
69 - Tosiaki Kori 2001
We shall give an axiomatic construction of Wess-Zumino-Witten actions valued in (G=SU(N)), (Ngeq 3). It is realized as a functor ({WZ}) from the category of conformally flat four-dimensional manifolds to the category of line bundles with connection that satisfies, besides the axioms of a topological field theory, the axioms which abstract Wess-Zumino-Witten actions. To each conformally flat four-dimensional manifold (Sigma) with boundary (Gamma=partialSigma), a line bundle (L=WZ(Gamma)) with connection over the space (Gamma G) of mappings from (Gamma) to (G) is associated. The Wess-Zumino-Witten action is a non-vanishing horizontal section (WZ(Sigma)) of the pull back bundle (r^{ast}L) over (Sigma G) by the boundary restriction (r). (WZ(Sigma)) is required to satisfy a generalized Polyakov-Wiegmann formula with respect to the pointwise multiplication of the fields (Sigma G). Associated to the WZW-action there is a geometric descrption of extensions of the Lie group (Omega^3G) due to J. Mickelsson. In fact we shall construct two abelian extensions of (Omega^3G) that are in duality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا