Do you want to publish a course? Click here

Correlation Functions of The Tri-critical 3-states Potts Model

49   0   0.0 ( 0 )
 Added by Smain Balaska
 Publication date 2003
  fields Physics
and research's language is English
 Authors S. Balaska




Ask ChatGPT about the research

We build the Z$_{3}$ invariants fusion rules associated to the (D$_{4}$,A$_{6}$) conformal algebra. This algebra is known to describe the tri-critical Potts model. The 4-pt correlation functions of critical fields are developed in the bootstrap approach, and in the other hand, they are written in term of integral representation of the conformal blocks. By comparing both the expressions, one can determine the structure constantes of the operator algebra.

rate research

Read More

The bootstrap determination of the geometrical correlation functions in the two-dimensional Potts model proposed in a paper [arXiv:1607.07224] was later shown in [arXiv:1809.02191] to be incorrect, the actual spectrum of the model being considerably more complex than initially conjectured. We provide in this paper a geometrical interpretation of the four-point functions built in [arXiv:1607.07224], and explain why the results obtained by these authors, albeit incorrect, appeared so close to those of their numerical simulations of the Potts model. Our strategy is based on a cluster expansion of correlation functions in RSOS minimal models, and a subsequent numerical and algebraic analysis of the corresponding $s$-channel spectrum, in full analogy with our early work on the Potts model [arXiv:1809.02191]. Remarkable properties of the lattice amplitudes are uncovered, which explain in particular the truncation of the spectrum of [arXiv:1809.02191] to the much simpler one of the RSOS models, and which will be used in a forthcoming paper to finally determine the geometric four-point functions of the Potts model itself.
We consider a multi-scalar field theory with either short-range or long-range free action and with quartic interactions that are invariant under $O(N_1)times O(N_2) times O(N_3)$ transformations, of which the scalar fields form a tri-fundamental representation. We study the renormalization group fixed points at two loops at finite $N$ and in various large-$N$ scaling limits for small $epsilon$, the latter being either the deviation from the critical dimension or from the critical scaling of the free propagator. In particular, for the homogeneous case $N_i = N$ for $i=1,2,3$, we study the subleading corrections to previously known fixed points. In the short-range model, for $epsilon N^2gg 1$, we find complex fixed points with non-zero tetrahedral coupling, that at leading order reproduce the results of arXiv:1707.03866 ; the main novelty at next-to-leading order is that the critical exponents acquire a real part, thus allowing a correct identification of some fixed points as IR stable. In the long-range model, for $epsilon N ll 1 $, we find again complex fixed points with non-zero tetrahedral coupling, that at leading order reproduce the line of stable fixed points of arXiv:1903.03578; at next-to-leading order, this is reduced to a discrete set of stable fixed points. One difference between the short-range and long-range cases is that, in the former the critical exponents are purely imaginary at leading-order and gain a real part at next-to-leading order, while for the latter the situation is reversed.
43 - S.Balaska 2002
In this work, we exploit the operator content of the $(D_{4}, A_{6})$ conformal algebra. By constructing a $Z_{2}$-invariants fusion rules of a chosen subalgebra and by resolving the bootstrap equations consistent with these rules, we determine the structure constants of the subalgebra.
Low frequency perturbations at the boundary of critical quantum chains can be understood in terms of the sequence of boundary conditions imposed by them, as has been previously demonstrated in the Ising and related fermion models. Using extensive numerical simulations, we explore the scaling behavior of the Loschmidt echo under longitudinal field perturbations at the boundary of a critical $mathbb{Z}_3$ Potts model. We show that at times much larger than the relaxation time after a boundary quench, the Loschmidt-echo has a power-law scaling as expected from interpreting the quench as insertion of boundary condition changing operators. Similar scaling is observed as a function of time-period under a low frequency square-wave pulse. We present numerical evidence which indicate that under a sinusoidal or triangular pulse, scaling with time period is modified by Kibble-Zurek effect, again similar to the case of the Ising model. Results confirm the validity, beyond the Ising model, of the treatment of the boundary perturbations in terms of the effect on boundary conditions.
Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wus approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا