No Arabic abstract
A fully quantum version of the Witten-Olive analysis of the central charge in the N=1 Wess-Zumino model in $d=2$ with a kink solution is presented by using path integrals in superspace. We regulate the Jacobians with heat kernels in superspace, and obtain all superconformal anomalies as one Jacobian factor. The conserved quantum currents differ from the Noether currents by terms proportional to field equations, and these terms contribute to the anomalies. We identify the particular variation of the superfield which produces the central charge current and its anomaly; it is the variation of the auxiliary field. The quantum supersymmetry algebra which includes the contributions of superconformal anomalies is derived by using the Bjorken-Johnson-Low method instead of semi-classical Dirac brackets. We confirm earlier results that the BPS bound remains saturated at the quantum level due to equal anomalies in the energy and central charge.
We are solving for the case of flat superspace some homological problems that were formulated by Berkovits and Howe. (Our considerations can be applied also to the case of supertorus.) These problems arise in the attempt to construct integrals invariant with respect to supersymmetry. They appear also in other situations, in particular, in the pure spinor formalism in supergravity.
We study a $T^2$ deformation of large $N$ conformal field theories, a higher dimensional generalization of the $Tbar T$ deformation. The deformed partition function satisfies a flow equation of the diffusion type. We solve this equation by finding its diffusion kernel, which is given by the Euclidean gravitational path integral in $d+1$ dimensions between two boundaries with Dirichlet boundary conditions for the metric. This is natural given the connection between the flow equation and the Wheeler-DeWitt equation, on which we offer a new perspective by giving a gauge-invariant relation between the deformed partition function and the radial WDW wave function. An interesting output of the flow equation is the gravitational path integral measure which is consistent with a constrained phase space quantization. Finally, we comment on the relation between the radial wave function and the Hartle-Hawking wave functions dual to states in the CFT, and propose a way of obtaining the volume of the maximal slice from the $T^2$ deformation.
Complex monopole configurations dominate in the path integral in the Georgi-Glashow-Chern-Simons model and disorder the Higgs vacuum. No cancellation is expected among Gribov copies of the monopole configurations.
Observables of topological Yang-Mills theory were defined by Witten as the classes of an equivariant cohomology. We propose to define them alternatively as the BRST cohomology classes of a superspace version of the theory, where BRST invariance is associated to super Yang-Mills invariance. We provide and discuss the general solution of this cohomology.
A critically discerning discussion of path integral bosonization is given. Successively evaluating the conventional path integral bosonization of QCD it is shown without any approximations that gluons must be composed of two quarks. This contradicts the fundamentals of QCD, where quarks and gluons are independent fields. Furthermore, bosonizing the Fierz reordered effective four quark interaction term yields gluons, too. Colorless ``mesons are shown to be Fierz equivalent to a submanifold of gluons. The results obtained are not specific to QCD, but apply to other models as well.