Do you want to publish a course? Click here

Holographic Weyl Entropy Bounds

69   0   0.0 ( 0 )
 Added by Joshua Erlich
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the entropy bounds recently conjectured by Fischler, Susskind and Bousso, and proven in certain cases by Flanagan, Marolf and Wald (FMW). One of the FMW derivations supposes a covariant form of the Bekenstein entropy bound, the consequences of which we explore. The derivation also suggests that the entropy contained in a vacuum spacetime, e.g. Schwarzschild, is related to the shear on congruences of null rays. We find evidence for this intuition, but in a surprising way. We compare the covariant entropy bound to certain earlier discussions of black hole entropy, and comment on the separate roles of quantum mechanics and gravity in the entropy bound.



rate research

Read More

We explore the structure of holographic entropy relations (associated with information quantities given by a linear combination of entanglement entropies of spatial sub-partitions of a CFT state with geometric bulk dual). Such entropy relations can be recast in multiple ways, some of which have significant advantages. Motivated by the already-noted simplification of entropy relations when recast in terms of multipartite information, we explore additional simplifications when recast in a new basis, which we dub the K-basis, constructed from perfect tensor structures. For the fundamental information quantities such a recasting is surprisingly compact, in part due to the interesting fact that entropy vectors associated to perfect tensors are in fact extreme rays in the holographic entropy cone (as well as the full quantum entropy cone). More importantly, we prove that all holographic entropy inequalities have positive coefficients when expressed in the K-basis, underlying the key advantage over the entropy basis or the multipartite information basis.
We examine the deSitter entropy in the braneworld model with the Gauss-Bonnet/Lovelock terms. Then, we can see that the deSitter entropy computed through the Euclidean action exactly coincides with the holographic entanglement entropy.
Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy Cone (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI.
342 - Yong Xiao , Yi-Xin Chen 2011
We investigated the entropy bounds of the three types of statistics: para-Bose, para-Fermi and infinite statistics. We showed that the entropy bounds of the conventional Bose, Fermi statistics and their generalizations to parastatistics obey the $A^{3/4}$ law, while the entropy bound of infinite statistics obeys the area law. This suggests a close relationship between infinite statistics and quantum gravity.
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in four dimensions is investigated. We obtain the volume of the codimension one-time slice in the bulk geometry enclosed by the minimal surface for both the RindlerAdS space-time and the charged accelerated AdS Black holes in the bulk. It is shown that the holographic entanglement entropy and the volume enclosed by the minimal hyper-surface in both the Rindler spacetime and the charged single accelerated AdS Black holes (C-metric) in the bulk decrease with increasing acceleration parameter. Behavior of the entanglement entropy, subregion size and value of the acceleration parameter are investigated. It is shown that for jAj < 0:2 a larger subregion on the boundary is equivalent to less information about the space-time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا