We examine the deSitter entropy in the braneworld model with the Gauss-Bonnet/Lovelock terms. Then, we can see that the deSitter entropy computed through the Euclidean action exactly coincides with the holographic entanglement entropy.
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in four dimensions is investigated. We obtain the volume of the codimension one-time slice in the bulk geometry enclosed by the minimal surface for both the RindlerAdS space-time and the charged accelerated AdS Black holes in the bulk. It is shown that the holographic entanglement entropy and the volume enclosed by the minimal hyper-surface in both the Rindler spacetime and the charged single accelerated AdS Black holes (C-metric) in the bulk decrease with increasing acceleration parameter. Behavior of the entanglement entropy, subregion size and value of the acceleration parameter are investigated. It is shown that for jAj < 0:2 a larger subregion on the boundary is equivalent to less information about the space-time.
The holographic entanglement entropy (HEE) of the minimal geometrical deformation (MGD) procedure and extensions (EMGD), is scrutinized within the membrane paradigm of AdS/CFT. The HEE corrections of the Schwarzschild and Reissner--Nordstrom solutions, due to a finite fluid brane tension, are then derived and discussed in the context of the MGD and the EMGD.
We present a class of new black hole solutions in $D$-dimensional Lovelock gravity theory. The solutions have a form of direct product $mathcal{M}^m times mathcal{H}^{n}$, where $D=m+n$, $mathcal{H}^n$ is a negative constant curvature space, and are characterized by two integration constants. When $m=3$ and 4, these solutions reduce to the exact black hole solutions recently found by Maeda and Dadhich in Gauss-Bonnet gravity theory. We study thermodynamics of these black hole solutions. Although these black holes have a nonvanishing Hawking temperature, surprisingly, the mass of these solutions always vanishes. While the entropy also vanishes when $m$ is odd, it is a constant determined by Euler characteristic of $(m-2)$-dimensional cross section of black hole horizon when $m$ is even. We argue that the constant in the entropy should be thrown away. Namely, when $m$ is even, the entropy of these black holes also should vanish. We discuss the implications of these results.
We explore the structure of holographic entropy relations (associated with information quantities given by a linear combination of entanglement entropies of spatial sub-partitions of a CFT state with geometric bulk dual). Such entropy relations can be recast in multiple ways, some of which have significant advantages. Motivated by the already-noted simplification of entropy relations when recast in terms of multipartite information, we explore additional simplifications when recast in a new basis, which we dub the K-basis, constructed from perfect tensor structures. For the fundamental information quantities such a recasting is surprisingly compact, in part due to the interesting fact that entropy vectors associated to perfect tensors are in fact extreme rays in the holographic entropy cone (as well as the full quantum entropy cone). More importantly, we prove that all holographic entropy inequalities have positive coefficients when expressed in the K-basis, underlying the key advantage over the entropy basis or the multipartite information basis.
We consider the entropy bounds recently conjectured by Fischler, Susskind and Bousso, and proven in certain cases by Flanagan, Marolf and Wald (FMW). One of the FMW derivations supposes a covariant form of the Bekenstein entropy bound, the consequences of which we explore. The derivation also suggests that the entropy contained in a vacuum spacetime, e.g. Schwarzschild, is related to the shear on congruences of null rays. We find evidence for this intuition, but in a surprising way. We compare the covariant entropy bound to certain earlier discussions of black hole entropy, and comment on the separate roles of quantum mechanics and gravity in the entropy bound.