In this paper we compute the charge group for symmetry preserving D-branes on group manifolds for all simple, simply-connected, connected compact Lie groups G.
This paper shows how to construct anomaly free world sheet actions in string theory with $D$-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric objects which are naturally associated to $D$-branes and connections on them. The holonomy of these connections can be used to cancel global anomalies in the world sheet action.
We study correlation functions of D-branes and a supergravity mode in AdS, which are dual to structure constants of two sub-determinant operators with large charge and a BPS single-trace operator. Our approach is inspired by the large charge expansion of CFT and resolves puzzles and confusions in the literature on the holographic computation of correlation functions of heavy operators. In particular, we point out two important effects which are often missed in the literature; the first one is an average over classical configurations of the heavy state, which physically amounts to projecting the state to an eigenstate of quantum numbers. The second one is the contribution from wave functions of the heavy state. To demonstrate the power of the method, we first analyze the three-point functions in $mathcal{N}=4$ super Yang-Mills and reproduce the results in field theory from holography, including the cases for which the previous holographic computation gives incorrect answers. We then apply it to ABJM theory and make solid predictions at strong coupling. Finally we comment on possible applications to states dual to black holes and fuzzballs.
In this highly speculative note we conjecture that it may be possible to understand features of coincident D-branes, such as the appearance of enhanced non-abelian gauge symmetry, in a purely geometric fashion, using a form of geometry known as scheme theory. We give a very brief introduction to some relevant ideas from scheme theory, and point out how these ideas work in special cases.
We develop means of computing exact degerenacies of BPS black holes on toric Calabi-Yau manifolds. We show that the gauge theory on the D4 branes wrapping ample divisors reduces to 2D q-deformed Yang-Mills theory on necklaces of P^1s. As explicit examples we consider local P^2, P^1 x P^1 and A_k type ALE space times C. At large N the D-brane partition function factorizes as a sum over squares of chiral blocks, the leading one of which is the topological closed string amplitude on the Calabi-Yau. This is in complete agreement with the recent conjecture of Ooguri, Strominger and Vafa.
We review orientifold constructions in the presence of magnetic backgrounds both in the open and closed sectors. Generically, the resulting orientifold models have a nice geometric description in terms of rotated D-branes and/or O-planes. In the case of multiple magnetic backgrounds, some amount of supersymmetry is recovered if the magnetic fields are suitably chosen and part of the original D-branes and/or O-planes are transmuted into new ones.