No Arabic abstract
We review orientifold constructions in the presence of magnetic backgrounds both in the open and closed sectors. Generically, the resulting orientifold models have a nice geometric description in terms of rotated D-branes and/or O-planes. In the case of multiple magnetic backgrounds, some amount of supersymmetry is recovered if the magnetic fields are suitably chosen and part of the original D-branes and/or O-planes are transmuted into new ones.
We study correlation functions of D-branes and a supergravity mode in AdS, which are dual to structure constants of two sub-determinant operators with large charge and a BPS single-trace operator. Our approach is inspired by the large charge expansion of CFT and resolves puzzles and confusions in the literature on the holographic computation of correlation functions of heavy operators. In particular, we point out two important effects which are often missed in the literature; the first one is an average over classical configurations of the heavy state, which physically amounts to projecting the state to an eigenstate of quantum numbers. The second one is the contribution from wave functions of the heavy state. To demonstrate the power of the method, we first analyze the three-point functions in $mathcal{N}=4$ super Yang-Mills and reproduce the results in field theory from holography, including the cases for which the previous holographic computation gives incorrect answers. We then apply it to ABJM theory and make solid predictions at strong coupling. Finally we comment on possible applications to states dual to black holes and fuzzballs.
In this highly speculative note we conjecture that it may be possible to understand features of coincident D-branes, such as the appearance of enhanced non-abelian gauge symmetry, in a purely geometric fashion, using a form of geometry known as scheme theory. We give a very brief introduction to some relevant ideas from scheme theory, and point out how these ideas work in special cases.
This paper shows how to construct anomaly free world sheet actions in string theory with $D$-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric objects which are naturally associated to $D$-branes and connections on them. The holonomy of these connections can be used to cancel global anomalies in the world sheet action.
The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1)^4 truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza-Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S^8. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS2xM8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields.
We study 4d SCFTs obtained by orientifold projections on necklace quivers with fractional branes. The models obtained by this procedure are $mathcal{N}=1$ linear quivers with unitary, symplectic and orthogonal gauge groups, bifundamental and tensorial matter. Remarkably, models that are not dual in the unoriented case can have the same central charges and superconformal index after the projection. The reason for this behavior rests upon the ubiquitous presence of adjoint fields with R-charge one. We claim that the presence of such fields is at the origin of the notion of inherited S-duality on the models conformal manifold.