No Arabic abstract
We discuss the signature of the scale of short distance physics in the Cosmic Microwave Background. In addition to effects which depend on the ratio of Hubble scale H during inflation to the energy scale M of the short distance physics, there can be effects which depend on $dot{phi}^2/M^4$ where $phi$ is the {it classical background} of the inflaton field. Therefore, the imprints of short distance physics on the spectrum of Cosmic Microwave Background anisotropies generically involve a {it double expansion}. We present some examples of a single scalar field with higher order kinetic terms coupled to Einstein gravity, and illustrate that the effects of short distance physics on the Cosmic Microwave Background can be substantial even for H << M, and generically involve corrections that are not simply powers of H/M. The size of such effects can depend on the short distance scale non-analytically even though the action is local.
We perform a discrete wavelet analysis of the COBE-DMR 4yr sky maps and find a significant scale-scale correlation on angular scales from about 11 to 22 degrees, only in the DMR face centered on the North Galactic Pole. This non-Gaussian signature does not arise either from the known foregrounds or the correlated noise maps, nor is it consistent with upper limits on the residual systematic errors in the DMR maps. Either the scale-scale correlations are caused by an unknown foreground contaminate or systematic errors on angular scales as large as 22 degrees, or the standard inflation plus cold dark matter paradigm is ruled out at the $> 99%$ confidence level.
In this paper we develop the theory of clusterization of peaks in a Gaussian random field. We have obtained new mathematical results from this theory and the theory of percolation and have proposed a topological method of analysis of sky maps based on these results. We have simulated $10^otimes10^o$ sky maps of the cosmic microwave background anisotropy expected from different cosmological models with $0.5^o-1^o$ resolution in order to demonstrate how this method can be used for detection of non-Gaussian noise in the maps and detection of the Doppler-peak in the spectrum of perturbation of $gD T/T$.
The cosmic microwave background (CMB) is affected by the total radiation density around the time of decoupling. At that epoch, neutrinos comprised a significant fraction of the radiative energy, but there could also be a contribution from primordial gravitational waves with frequencies greater than ~ 10^-15 Hz. If this cosmological gravitational wave background (CGWB) were produced under adiabatic initial conditions, its effects on the CMB and matter power spectrum would mimic massless non-interacting neutrinos. However, with homogenous initial conditions, as one might expect from certain models of inflation, pre big-bang models, phase transitions and other scenarios, the effect on the CMB would be distinct. We present updated observational bounds for both initial conditions using the latest CMB data at small scales from the South Pole Telescope (SPT) in combination with Wilkinson Microwave Anisotropy Probe (WMAP), current measurements of the baryon acoustic oscillations, and the Hubble parameter. With the inclusion of the data from SPT the adiabatic bound on the CGWB density is improved by a factor of 1.7 to 10^6 Omega_gw < 8.7 at the 95% confidence level (C.L.), with weak evidence in favor of an additional radiation component consistent with previous analyses. The constraint can be converted into an upper limit on the tension of horizon-sized cosmic strings that could generate this gravitational wave component, with Gmu < 2 10^-7 at 95% C.L., for string tension Gmu. The homogeneous bound improves by a factor of 3.5 to 10^6 Omega_gw < 1.0 at 95% C.L., with no evidence for such a component from current data.
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments.
Fluctuations in the brightness of the Earths atmosphere originating from water vapor are an important source of noise for ground-based instruments attempting to measure anisotropy in the Cosmic Microwave Background. This paper presents a model for the atmospheric fluctuations and derives simple expressions to predict the contribution of the atmosphere to experimental measurements. Data from the South Pole and from the Atacama Desert in Chile, two of the driest places on Earth, are used to assess the level of fluctuations at each site.