No Arabic abstract
We examine the Dyson-Schwinger equation for the fermion propagator in quenched QED in three and four dimension based on spectral representation with vertex ansatz which preserves Ward-Takahashi Identity.An appropriate renormalization within dispersion integral smoothes the threshold behaviour of the fermion self energy in three dimension.Thus we avoid the infrared singurality in three dimension.The behaviour of the fermion propagator in three dimension near the threshold is then found to be similar to the four dimensional one.There exisit analytic solutions for arbitrary gauges and the full propagators are expressed in terms of hypergeometric function in four dimension.There is a possibility of dynamical chiral symmetry breaking in four dimension with vanishing bare mass.
We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in $N_f=2+1$ lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for the same cost.
We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian $SU(N)$ gauge field within the Wigner function formalism. By using the covariant gradient expansion, we disentangle the Wigner equations in four-vector space up to the first order and find that only the time-like component of the chiral Wigner function is independent while other components can be explicit derivative. After further decomposing the Wigner function or equations in color space, we present the non-Abelian covariant chiral kinetic equation for the color singlet and multiplet phase-space distribution functions. These phase-space distribution functions have non-trivial Lorentz transformation rules when we define them in different reference frames. The chiral anomaly from non-Abelian gauge field arises naturally from the Berry monopole in Euclidian momentum space in the vacuum or Dirac sea contribution. The anomalous currents as non-Abelian counterparts of chiral magnetic effect and chiral vortical effect have also been derived from the non-Abelian chiral kinetic equation.
We reassess an alternative CPT-odd electrodynamics obtained from a Palatini-like procedure. Starting from a more general situation, we analyze the physical consistency of the model for different values of the parameter introduced in the mass tensor. We show that there is a residual gaugeinvariance in the model if the local transformation is taken to vary only in the direction of the Lorentz-breaking vector.
We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.
We give a gauge-covariant decomposition of the Yang-Mills field with an exceptional gauge group $G(2)$, which extends the field decomposition invented by Cho, Duan-Ge, and Faddeev-Niemi for the $SU(N)$ Yang-Mills field. As an application of the decomposition, we derive a new expression of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of $G(2)$. The resulting new form is used to define gauge-invariant magnetic monopoles in the $G(2)$ Yang-Mills theory. Moreover, we obtain the quantization condition to be satisfied by the resulting magnetic charge. The method given in this paper is general enough to be applicable to any semi-simple Lie group other than $SU(N)$ and $G(2)$.