Do you want to publish a course? Click here

Gauge-covariant decomposition and magnetic monopole for G(2) Yang-Mills field

65   0   0.0 ( 0 )
 Added by Ryutaro Matsudo
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We give a gauge-covariant decomposition of the Yang-Mills field with an exceptional gauge group $G(2)$, which extends the field decomposition invented by Cho, Duan-Ge, and Faddeev-Niemi for the $SU(N)$ Yang-Mills field. As an application of the decomposition, we derive a new expression of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of $G(2)$. The resulting new form is used to define gauge-invariant magnetic monopoles in the $G(2)$ Yang-Mills theory. Moreover, we obtain the quantization condition to be satisfied by the resulting magnetic charge. The method given in this paper is general enough to be applicable to any semi-simple Lie group other than $SU(N)$ and $G(2)$.



rate research

Read More

154 - R. Jackiw 1997
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
As shown by Taubes, in the Bogomolnyi-Prasad-Sommerfield limit the SU(2) Yang-Mills-Higgs model possesses smooth finite energy solutions, which do not satisfy the first order Bogomolnyi equations. We construct numerically such a non-Bogomolnyi solution, corresponding to a monopole-antimonopole pair, and extend the construction to finite Higgs potential.
The spectrum of the massive CPT-odd Yang-Mills propagator with Lorentz violation is performed at tree-level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violation. The causality analysis is performed from group and front velocities for both, spacelike and timelike background tensors. It is show that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary, if one takes the Faddeev-Popov ghost into account.
We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita equivalence between ordinary Yang-Mills theory with multi-valued gauge fields and noncommutative Yang-Mills theory with periodic gauge fields. Using this equivalence, we show that generic noncommutative gauge theories in the continuum can be regularized nonperturbatively by means of {it ordinary} lattice gauge theory with t~Hooft flux. In the case of irrational noncommutativity parameters, the rank of the gauge group of the commutative lattice theory must be sent to infinity in the continuum limit. As a special case, the construction includes the recent description of noncommutative Yang-Mills theories using twisted large $N$ reduced models. We study the coupling of noncommutative gauge fields to matter fields in the fundamental representation of the gauge group using the lattice formalism. The large mass expansion is used to describe the physical meaning of Wilson loops in noncommutative gauge theories. We also demonstrate Morita equivalence in the presence of fundamental matter fields and use this property to comment on the calculation of the beta-function in noncommutative quantum electrodynamics.
Using the background field method, we study in a general covariant gauge the renormalization of the 6-dimensional Yang-Mills theory. This requires background gauge invariant counterterms, some of which do not vanish on shell. Such counterterms occur, even off-shell, with gauge-independent coefficients. The analysis is done at one loop order and the extension to higher orders is discussed by means of the BRST identities. We examine the behaviour of the beta function, which implies that this theory is not asymptotically free.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا