No Arabic abstract
We study the space-time symmetries and transformation properties of the non-commutative U(1) gauge theory, by using Noether charges. We carry out our analysis by keeping an open view on the possible ways $theta^{mu u}$ could transform. We conclude that $theta^{mu u}$ cannot transform under any space-time transformation since the theory is not invariant under the conformal transformations, with the only exception of space-time translations. The same analysis applies to other gauge groups.
It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry. In this paper we present an explicit proof for the case of the torus and the sphere.
It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry.
We propose a formulation of d-dimensional SU(N) Yang-Mills theories on a d+2-dimensional space with the extra two dimensions forming a surface with non-commutative geometry. This equivalence is valid in any finite order in the 1/N expansion.
We study the dynamics of a N=2 supersymmetric SU(N) gauge theory with fundamental or adjoint matter in presence of a non trivial Omega-background along a two dimensional plane. The prepotential and chiral correlators of the gauge theory can be obtained, via a saddle point analysis, from an equation which can be viewed as a non commutative version of the standard Seiberg and Witten curve.
The Moyal *-deformed noncommutative version of Burgers equation is considered. Using the *-analog of the Cole-Hopf transformation, the linearization of the model in terms of the linear heat equation is found. Noncommutative q-deformations of shock soliton solutions and their interaction are described