Do you want to publish a course? Click here

New Formulations of D=10 Supersymmetry and D8-O8 Domain Walls

59   0   0.0 ( 0 )
 Added by Eric Bergshoeff
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

We discuss a generalized form of IIA/IIB supergravity depending on all R-R potentials C^(p) (p=0,1,...,9) as the effective field theory of Type IIA/IIB superstring theory. For the IIA case we explicitly break this R-R democracy to either p<=3 or p>=5 which allows us to write a new bulk action that can be coupled to N=1 supersymmetric brane actions. The case of 8-branes is studied in detail using the new bulk & brane action. The supersymmetric negative tension branes without matter excitations can be viewed as orientifolds in the effective action. These D8-branes and O8-planes are fundamental in Type I string theory. A BPS 8-brane solution is given which satisfies the jump conditions on the wall. It implies a quantization of the mass parameter in string units. Also we find a maximal distance between the two walls, depending on the string coupling and the mass parameter. We derive the same results via supersymmetric flow equations.



rate research

Read More

We study the worldvolume dynamics of BPS domain walls in N=1 SQCD with N_f=N flavors, and exhibit an enhancement of supersymmetry for the reduced moduli space associated with broken flavor symmetries. We provide an explicit construction of the worldvolume superalgebra which corresponds to an N=2 Kahler sigma model in 2+1D deformed by a potential, given by the norm squared of a U(1) Killing vector, resulting from the flavor symmetries broken by unequal quark masses. This framework leads to a worldvolume description of novel two-wall junction configurations, which are 1/4-BPS objects, but nonetheless preserve two supercharges when viewed as kinks on the wall worldvolume.
We study non-topological, charged planar walls (Q-walls) in the context of a particle physics model with supersymmetry broken by low-energy gauge mediation. Analytical properties are derived within the flat-potential approximation for the flat-direction raising potential, while a numerical study is performed using the full two-loop supersymmetric potential. We analyze the energetics of finite-size Q-walls and compare them to Q-balls, non-topological solitons possessing spherical symmetry and arising in the same supersymmetric model. This allow us to draw a phase diagram in the charge-transverse length plane, which shows a region where Q-wall solutions are more stable than Q-balls.
We present the class of deformations of simple Euclidean superalgebra, which describe the supersymmetrization of some Lie algebraic noncommutativity of D=4 Euclidean space-time. The presented deformations are generated by the supertwists. We provide new explicit formulae for a chosen twisted D=4 Euclidean Hopf superalgebra and describe the corresponding quantum covariant deformation of chiral Euclidean superspace.
We study configurations of intersecting domain walls in a Wess-Zumino model with three vacua. We introduce a volume-preserving flow and show that its static solutions are configurations of intersecting domain walls that form double bubbles, that is, minimal area surfaces which enclose and separate two prescribed volumes. To illustrate this field theory approach to double bubbles, we use domain walls to reconstruct the phase diagram for double bubbles in the flat square two-torus and also construct all known examples of double bubbles in the flat cubic three-torus.
215 - Ali Masoumi , I-Sheng Yang 2011
We present analytical solutions of BPS domain walls in the Einstein-Maxwell flux landscape. We also remove the smeared-branes approximation and write down solutions with localized branes. In these solutions the domain walls induce strong (if not infinite) warping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا