Do you want to publish a course? Click here

Quantum-mechanical tunnelling and the renormalization group

67   0   0.0 ( 0 )
 Added by Nikolaos Tetradis
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

We explore the applicability of the exact renormalization group to the study of tunnelling phenomena. We investigate quantum-mechanical systems whose energy eigenstates are affected significantly by tunnelling through a barrier in the potential. Within the approximation of the derivative expansion, we find that the exact renormalization group predicts the correct qualitative behaviour for the lowest energy eigenvalues. However, quantitative accuracy is achieved only for potentials with small barriers. For large barriers, the use of alternative methods, such as saddle-point expansions, can provide quantitative accuracy.



rate research

Read More

66 - Eric Sharpe 2019
In this article we review how categorical equivalences are realized by renormalization group flow in physical realizations of stacks, derived categories, and derived schemes. We begin by reviewing the physical realization of sigma models on stacks, as (universality classes of) gauged sigma models, and look in particular at properties of sigma models on gerbes (equivalently, sigma models with restrictions on nonperturbative sectors), and decomposition, in which two-dimensional sigma models on gerbes decompose into disjoint unions of ordinary theories. We also discuss stack structures on examples of moduli spaces of SCFTs, focusing on elliptic curves, and implications of subtleties there for string dualities in other dimensions. In the second part of this article, we review the physical realization of derived categories in terms of renormalization group flow (time evolution) of combinations of D-branes, antibranes, and tachyons. In the third part of this article, we review how Landau-Ginzburg models provide a physical realization of derived schemes, and also outline an example of a derived structure on a moduli spaces of SCFTs.
The effective action in quantum general relativity is strongly dependent on the gauge-fixing and parametrization of the quantum metric. As a consequence, in the effective approach to quantum gravity, there is no possibility to introduce the renormalization-group framework in a consistent way. On the other hand, the version of effective action proposed by Vilkovisky and DeWitt does not depend on the gauge-fixing and parametrization off-shell, opening the way to explore the running of the cosmological and Newton constants as well as the coefficients of the higher-derivative terms of the total action. We argue that in the effective framework the one-loop beta functions for the zero-, two- and four-derivative terms can be regarded as exact, that means, free from corrections coming from the higher loops. In this perspective, the running describes the renormalization group flow between the present-day Hubble scale in the IR and the Planck scale in the UV.
61 - T. Aida , Y. Kitazawa , H. Kawai 1994
We study quantum gravity in $2+epsilon$ dimensions in such a way to preserve the volume preserving diffeomorphism invariance. In such a formulation, we prove the following trinity: the general covariance, the conformal invariance and the renormalization group flow to Einstein theory at long distance. We emphasize that the consistent and macroscopic universes like our own can only exist for matter central charge $0<c<25$. We show that the spacetime singularity at the big bang is resolved by the renormalization effect and universes are found to bounce back from the big crunch. Our formulation may be viewed as a Ginzburg-Landau theory which can describe both the broken and the unbroken phase of quantum gravity and the phase transition between them.
The vacuum structure is probed by boundary conditions. The behaviour of thermodynamical quantities like free energy, boundary entropy and entanglement entropy under the boundary renormalization group flow are analysed in 2D conformal field theories. The results show that whereas vacuum energy and boundary entropy turn out to be very sensitive to boundary conditions, the vacuum entanglement entropy is independent of boundary properties when the boundary of the entanglement domain does not overlap the boundary of the physical space. In all cases the second law of thermodynamics holds along the boundary renormalization group flow.
244 - Shoichi Ichinose 2011
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cutoff), $om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {it finitely} obtained after the {it proper renormalization procedure.} The {it warp parameter} $om$ suffers from the {it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا