Do you want to publish a course? Click here

Integrable Quantum Field Theories with Unstable Particles

74   0   0.0 ( 0 )
 Added by J. Luis Miramontes
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

The structure of a new family of factorised $S$-matrix theories with resonance poles is reviewed. They are conjectured to correspond to the Homogeneous sine-Gordon theories associated with simply laced compact Lie groups. Two of their more remarkable properties are, first, that some of the resonance poles can be traced to the presence of unstable particles in the spectrum, and, second, that they involve several independent mass scales. The conjectured relationship with the simply laced HSG theories has been checked by means of the Thermodynamic Bethe ansatz (TBA) and, more recently, through the explicit calculation of the Form Factors. The main results of the TBA analysis are summarized.



rate research

Read More

68 - G. Mussardo , V. Riva , G. Sotkov 2005
We determine the semiclassical energy levels for the phi^4 field theory in the broken symmetry phase on a 2D cylindrical geometry with antiperiodic boundary conditions by quantizing the appropriate finite--volume kink solutions. The analytic form of the kink scaling functions for arbitrary size of the system allows us to describe the flow between the twisted sector of c=1 CFT in the UV region and the massive particles in the IR limit. Kink-creating operators are shown to correspond in the UV limit to disorder fields of the c=1 CFT. The problem of the finite--volume spectrum for generic 2D Landau--Ginzburg models is also discussed.
We calculate the multipoint Green functions in 1+1 dimensional integrable quantum field theories. We use the crossing formula for general models and calculate the 3 and 4 point functions taking in to account only the lower nontrivial intermediate states contributions. Then we apply the general results to the examples of the scaling $Z_{2}$ Ising model, sinh-Gordon model and $Z_{3}$ scaling Ising model. We demonstrate this calculations explicitly. The results can be applied to physical phenomena as for example to the Raman scattering.
158 - Bin Chen , Jue Hou , Jia Tian 2021
In this work, we try to construct the Lax connections of $Tbar{T}$-deformed integrable field theories in two different ways. With reasonable assumptions, we make ansatz and find the Lax pairs in the $Tbar{T}$-deformed affine Toda theories and the principal chiral model by solving the Lax equations directly. This way is straightforward but maybe hard to apply for general models. We then make use of the dynamical coordinate transformation to read the Lax connection in the deformed theory from the undeformed one. We find that once the inverse of the transformation is available, the Lax connection can be read easily. We show the construction explicitly for a few classes of scalar models, and find consistency with the ones in the first way.
95 - Denis Karateev , Simon Kuhn , 2019
We propose a new non-perturbative method for studying UV complete unitary quantum field theories (QFTs) with a mass gap in general number of spacetime dimensions. The method relies on unitarity formulated as positive semi-definiteness of the matrix of inner products between asymptotic states (in and out) and states created by the action of local operators on the vacuum. The corresponding matrix elements involve scattering amplitudes, form factors and spectral densities of local operators. We test this method in two-dimensional QFTs by setting up a linear optimization problem that gives a lower bound on the central charge of the UV CFT associated to a QFT with a given mass spectrum of stable particles (and couplings between them). Some of our numerical bounds are saturated by known form factors in integrable theories like the sine-Gordon, E8 and O(N) models.
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include condensed matter systems with quenched disorder (e.g. spin glass) or cosmological systems in context of the string theory landscape (e.g. cosmic inflation). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا