Do you want to publish a course? Click here

The Rest-Frame Darwin Potential from the Lienard-Wiechert Solution in the Radiation Gauge

97   0   0.0 ( 0 )
 Added by Luca Lusanna
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

In the semiclassical approximation in which the electric charges of scalar particles are described by Grassmann variables ($Q_i^2=0, Q_iQ_j e 0$), it is possible to re-express the Lienard-Wiechert potentials and electric fields in the radiation gauge as phase space functions, because the difference among retarded, advanced, and symmetric Green functions is of order Q_i^2. By working in the rest-frame instant form of dynamics, the elimination of the electromagnetic degrees of freedom by means of suitable second classs contraints leads to the identification of the Lienard-Wiechert reduced phase space containing only N charged particles with mutual action-at-a-distance vector and scalar potentials. A Darboux canonical basis of the reduced phase space is found. This allows one to re-express the potentials for arbitrary N as a unique effective scalar potential containing the Coulomb potential and the complete Darwin one, whose 1/c^2 component agrees for with the known expression. The effective potential gives the classical analogue of all static and non-static effects of the one-photon exchange Feynman diagram of scalar electrodynamics.



rate research

Read More

The anomaly cancellation equations for the $U(1)$ gauge group can be written as a cubic equation in $n-1$ integer variables, where $n$ is the number of Weyl fermions carrying the $U(1)$ charge. We solve this Diophantine cubic equation by providing a parametrization of the charges in terms of $n-2$ integers, and prove that this is the most general solution.
Costa et al. [Phys. Rev. Lett. 123, 151601 (2019)] recently gave a general solution to the anomaly equations for $n$ charges in a $U(1)$ gauge theory. `Primitive solutions of chiral fermion charges were parameterised and it was shown how operations performed upon them (concatenation with other primitive solutions and with vector-like solutions) yield the general solution. We show that the ingenious methods used there have a simple geometric interpretation, corresponding to elementary constructions in number theory. Viewing them in this context allows the fully general solution to be written down directly, without the need for further operations. Our geometric method also allows us to show that the only operation Costa et al. require is permutation. It also gives a variety of other, qualitatively similar, parameterisations of the general solution, as well as a qualitatively different (and arguably simpler) form of the general solution for $n$ even.
This paper deals with quantum fluctuations near the classical instanton configuration. Feynman diagrams in the instanton background are used for the calculation of the tunneling amplitude (the instanton density) in the three-loop order for quartic double-well potential. The result for the three-loop contribution coincides in six significant figures with one given long ago by J.~Zinn-Justin. Unlike the two-loop contribution where all involved Feynman integrals are rational numbers, in the three-loop case Feynman diagrams can contain irrational contributions.
The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellations which make this possible also occur on the microscopic scale, where they can be investigated by means of a random matrix model. We show that they can be understood in terms of orthogonality properties of orthogonal polynomials. In the strong non-Hermiticity limit they are related to integrability properties of the spectral density. As a by-product we find exact analytical expressions for the partially quenched chiral condensate in the microscopic domain at nonzero chemical potential.
139 - Yutaka Ookouchi 2013
We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demonstrate that Aharonov-Bohm radiation, when combined with cosmological observations, imposes constraints on the compactification scales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا