Do you want to publish a course? Click here

Chiral Condensate at Nonzero Chemical Potential in the Microscopic Limit of QCD

174   0   0.0 ( 0 )
 Added by K. Splittorff
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellations which make this possible also occur on the microscopic scale, where they can be investigated by means of a random matrix model. We show that they can be understood in terms of orthogonality properties of orthogonal polynomials. In the strong non-Hermiticity limit they are related to integrability properties of the spectral density. As a by-product we find exact analytical expressions for the partially quenched chiral condensate in the microscopic domain at nonzero chemical potential.



rate research

Read More

We investigate the phase diagram of QCD-like gauge theories at strong coupling at finite magnetic field $B$, temperature $T$ and baryon chemical potential $mu$ using the improved holographic QCD model including the full backreaction of the quarks in the plasma. In addition to the phase diagram we study the behavior of the quark condensate as a function of $T$, $B$ and $mu$ and discuss the fate of (inverse) magnetic catalysis at finite $mu$. In particular we observe that inverse magnetic catalysis exists only for small values of the baryon chemical potential. The speed of sound in this holographic quark-gluon plasma exhibits interesting dependence on the thermodynamic parameters.
We consider chiral symmetry breaking at nonzero chemical potential and discuss the relation with the spectrum of the Dirac operator. We solve the so called Silver Blaze Problem that the chiral condensate at zero temperature does not depend on the chemical potential while this is not the case for the Dirac spectrum and the weight of the partition function.
The relation between the spectral density of the QCD Dirac operator at nonzero baryon chemical potential and the chiral condensate is investigated. We use the analytical result for the eigenvalue density in the microscopic regime which shows oscillations with a period that scales as 1/V and an amplitude that diverges exponentially with the volume $V=L^4$. We find that the discontinuity of the chiral condensate is due to the whole oscillating region rather than to an accumulation of eigenvalues at the origin. These results also extend beyond the microscopic regime to chemical potentials $mu sim 1/L$.
The microscopic spectral density of the QCD Dirac operator at nonzero baryon chemical potential for an arbitrary number of quark flavors was derived recently from a random matrix model with the global symmetries of QCD. In this paper we show that these results and extensions thereof can be obtained from the replica limit of a Toda lattice equation. This naturally leads to a factorized form into bosonic and fermionic QCD-like partition functions. In the microscopic limit these partition functions are given by the static limit of a chiral Lagrangian that follows from the symmetry breaking pattern. In particular, we elucidate the role of the singularity of the bosonic partition function in the orthogonal polynomials approach. A detailed discussion of the spectral density for one and two flavors is given.
We solve a new chiral Random Two-Matrix Theory by means of biorthogonal polynomials for any matrix size $N$. By deriving the relevant kernels we find explicit formulas for all $(n,k)$-point spectral (mixed or unmixed) correlation functions. In the microscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results to the ordinary (non-chiral) ensembles, and also there provide explicit solutions for any finite size $N$, and in the microscopic scaling limit. Our results give the general analytical expressions for the microscopic correlation functions of the Dirac operator eigenvalues in theories with imaginary baryon and isospin chemical potential, and can be used to extract the tree-level pion decay constant from lattice gauge theory configurations. We find exact agreement with previous computations based on the low-energy effective field theory in the two special cases where comparisons are possible.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا