The one-loop NLO radiative corrections to the observables in polarized DIS using assumption that a quark is an essential massive particle are considered. If compared with classical QCD formulae the obtained results are identical for the unpolarized and different for polarized sum rules, that can be explained as the influence of the finite quark mass effects on NLO QCD corrections. The explicit expression for one-loop NLO QCD contribution to the structure function g_2 is presented.
The current status of the Adler function and two closely related Deep Inelastic Scattering (DIS) sum rules, namely, the Bjorken sum rule for polarized DIS and the Gross-Llewellyn Smith sum rule are briefly reviewed. A new result is presented: an analytical calculation of the coefficient function of the latter sum rule in a generic gauge theory in order O(alpha_s^4). It is demonstrated that the corresponding Crewther relation allows to fix two of three colour structures in the O(alpha_s^4) contribution to the singlet part of the Adler function.
Neutrino mass sum rules are an important class of predictions in flavour models relating the Majorana phases to the neutrino masses. This leads, for instance, to enormous restrictions on the effective mass as probed in experiments on neutrinoless double beta decay. While up to now these sum rules have in practically all cases been taken to hold exactly, we will go here beyond that. After a discussion of the types of corrections that could possibly appear and elucidating on the theory behind neutrino mass sum rules, we estimate and explicitly compute the impact of radiative corrections, as these appear in general and thus hold for whole groups of models. We discuss all neutrino mass sum rules currently present in the literature, which together have realisations in more than 50 explicit neutrino flavour models. We find that, while the effect of the renormalisation group running can be visible, the qualitative features do not change. This finding strongly backs up the solidity of the predictions derived in the literature, and it thus marks a very important step in deriving testable and reliable predictions from neutrino flavour models.
The higher twist corrections $h^N(x)/Q^2$ to the spin dependent proton and neutron $g_1$ structure functions are extracted from the world data on $g_1(x,Q^2)$ in a model independent way and found to be non-negligible. Their role in determining the polarized parton densities in the nucleon is discussed. It is also considered how the results are influenced by the recent JLab and HERMES/d inclusive DIS data.
The order - alpha radiative corrections to the differential decay rate of polarized orthopositronium are obtained. Their influences on the three photons coincidence rate as a function of positronium polarization is considered.
Theoretical predictions for Bhabha scattering observables are presented including complete one-loop electroweak radiative corrections. A longitudinal polarization of the initial beams is taken into account. Numerical results for the asymmetry $A_{LR}$ and the relative correction $delta$ are given for the set of the energy $E_{cm}=250, 500, 1000$~GeV with various polarization degrees.