No Arabic abstract
Neutrino mass sum rules are an important class of predictions in flavour models relating the Majorana phases to the neutrino masses. This leads, for instance, to enormous restrictions on the effective mass as probed in experiments on neutrinoless double beta decay. While up to now these sum rules have in practically all cases been taken to hold exactly, we will go here beyond that. After a discussion of the types of corrections that could possibly appear and elucidating on the theory behind neutrino mass sum rules, we estimate and explicitly compute the impact of radiative corrections, as these appear in general and thus hold for whole groups of models. We discuss all neutrino mass sum rules currently present in the literature, which together have realisations in more than 50 explicit neutrino flavour models. We find that, while the effect of the renormalisation group running can be visible, the qualitative features do not change. This finding strongly backs up the solidity of the predictions derived in the literature, and it thus marks a very important step in deriving testable and reliable predictions from neutrino flavour models.
Correlations between light neutrino observables are arguably the strongest predictions of lepton avour models based on (discrete) symmetries, except for the very few cases which unambiguously predict the full set of leptonic mixing angles. A subclass of these correlations are neutrino mass sum rules, which connect the three (complex) light neutrino mass eigenvalues among each other. This connection constrains both the light neutrino mass scale and the Majorana phases, so that mass sum rules generically lead to a nonzero value of the lightest neutrino mass and to distinct predictions for the e ective mass probed in neutrinoless double beta decay. However, in nearly all cases known, the neutrino mass sum rules are not exact and receive corrections from various sources. We introduce a formalism to handle these corrections perturbatively in a model-independent manner, which overcomes issues present in earlier approaches. Our ansatz allows us to quantify the modi cation of the predictions derived from neutrino mass sum rules. We show that, in most cases, the predictions are fairly stable: while small quantitative changes can appear, they are generally rather mild. We therefore establish the predictivity of neutrino mass sum rules on a level far more general than previously known.
We compute perturbative corrections to $B to pi$ form factors from QCD light-cone sum rules with $B$-meson distribution amplitudes. Applying the method of regions we demonstrate factorization of the vacuum-to-$B$-meson correlation function defined with an interpolating current for pion, at one-loop level, explicitly in the heavy quark limit. The short-distance functions in the factorization formulae of the correlation function involves both hard and hard-collinear scales; and these functions can be further factorized into hard coefficients by integrating out the hard fluctuations and jet functions encoding the hard-collinear information. Resummation of large logarithms in the short-distance functions is then achieved via the standard renormalization-group approach. We further show that structures of the factorization formulae for $f_{B pi}^{+}(q^2)$ and $f_{B pi}^{0}(q^2)$ at large hadronic recoil from QCD light-cone sum rules match that derived in QCD factorization. In particular, we perform an exploratory phenomenological analysis of $B to pi$ form factors, paying attention to various sources of perturbative and systematic uncertainties, and extract $|V_{ub}|= left(3.05^{+0.54}_{-0.38} |_{rm th.} pm 0.09 |_{rm exp.}right) times 10^{-3}$ with the inverse moment of the $B$-meson distribution amplitude $phi_B^{+}(omega)$ determined by reproducing $f_{B pi}^{+}(q^2=0)$ obtained from the light-cone sum rules with $pi$ distribution amplitudes. Furthermore, we present the invariant-mass distributions of the lepton pair for $B to pi ell u_{ell}$ ($ell= mu ,, tau$) in the whole kinematic region. Finally, we discuss non-valence Fock state contributions to the $B to pi$ form factors $f_{B pi}^{+}(q^2)$ and $f_{B pi}^{0}(q^2)$ in brief.
Neutrino mass sum rules have recently gained again more attention as a powerful tool to discriminate and test various flavour models in the near future. A related question which was not yet discussed fully satisfactorily was the origin of these sum rules and if they are related to any residual or accidental symmetry. We will address this open issue here systematically and find previous statements confirmed. Namely, that the sum rules are not related to any enhanced symmetry of the Lagrangian after family symmetry breaking but that they are simply the result of a reduction of free parameters due to skillful model building.
A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). One of these implies in a lower bound on the effective neutrinoless double beta mass parameter, even for normal hierarchy neutrinos. Here we propose a new model based on the S4 flavor symmetry that leads to the new neutrino mass sum-rule and discuss how to generate a nonzero value for the reactor mixing angle indicated by recent experiments, and the resulting correlation with the solar mixing angle.
The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, $theta_{23}=45^circ pm 1^circ$, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.