No Arabic abstract
We investigate the possibility of observing the exotic decay mode of the top quark into the lightest stop ($tilde t_1$) and neutralino ($tildechi^0_1$) in the minimal supersymmetric standard model with R-parity at the upgraded Tevatron. First we determine the allowed range for the branching fraction $B(tto tilde t_1 tildechi^0_1)$ in the region of parameter space allowed by the $R_b$ data and the CDF $eegammagamma+{large ot} E_T$ event, and then consider all possible backgrounds and investigate the possibility of observing this final state at the Tevatron. We find that this final state is unobservable at Run 1. However, Run 2 can provide significant information on this new decay mode of the top quark: either discover it, or establish a strong constraint on the masses of $tilde t_1$ and $tildechi^0_1$ given approximately by $M_{tilde chi^0_1} > M_{tilde t_1} - 6$ GeV.
We study the possibility of discovering or excluding a light top squark (stop) based on top quark decays in the t-tbar events produced at the Fermilab Tevatron. In particular, we consider the Minimal Supersymmetric Standard Model with the sparticle spectrum m_{chi^+_1}+m_b, M_W+m_{chi^0_1}+m_b > m_{stop} > m_{chi^0_1}+m_c, where chi^0_1 is the lightest neutralino and chi^+_1 is the lightest chargino, so that t -> stop chi^0_1 and stop -> c chi^0_1. All other sparticle masses are assumed to be heavier than m_t. Such a spectrum seeks to explain the experimental values of alpha_s(M_Z^2), R_b and A_{LR} obtained from LEP/SLC data. We find that the prospect to observe a light stop via this channel at the Tevatron is very promising.
New measurements of the top quark mass from the Tevatron are presented. Combined with previous results, they yield a preliminary new world average of Mtop=170.9+-1.1(stat)+-1.5(syst)GeV/c**2 and impose new constraints on the mass of the Higgs boson.
This paper reports the most recent measurements of single top quark production performed by CDF and D0 collaborations in proton-antiproton collisions at Tevatron. Events are selected in the lepton+jets final state by CDF and D0 and in the missing transverse energy plus jets final state by CDF. The small single top signal in s-channel, t-channel and inclusive s+t channel is separated from the large background by using different multivariate techniques. We also present the most recent results on extraction of the CKM matrix element $|V_{tb}|$ from the single top quark cross section.
We show that a top-prime quark as heavy as 600 GeV can be discovered at the Tevatron, provided it is resonantly pair-produced via a vector color octet. If the top-prime originates from a vectorlike quark, then the production of a single top-prime in association with a top may also be observable, even through its decay into a Higgs boson and a top. A color octet with mass of about 1 TeV, which decays into a top-prime pair, may account for the CDF excess of semileptonic (Wj)(Wj) events.
Spin correlations of top quarks produced in hadron collisions have not been observed experimentally with large significance. In this Letter, we propose a new variable that may enable demonstration of the existence of spin correlations with 3-4 sigma significance using just a few hundred dilepton events both at the Tevatron and the LHC. Such number of dilepton events has been observed at the Tevatron. At the LHC, it will become available once integrated luminosity of a few hundred inverse picobarns is collected.